1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Type-safe bindings for Zircon fifo objects.
use crate::{ok, sys, AsHandleRef, Handle, HandleBased, HandleRef, Status};
use std::mem::MaybeUninit;
use zerocopy::{FromBytes, IntoBytes};
/// An object representing a Zircon fifo.
///
/// As essentially a subtype of `Handle`, it can be freely interconverted.
///
/// Encodes the element type in the type. Defaults to `()` for the entry type to allow for untyped
/// IPC. Use `Fifo::cast()` to convert an IPC-transferred fifo to one of the specific type required
/// that will support reads and writes.
#[repr(transparent)]
pub struct Fifo<R = UnspecifiedFifoElement, W = R>(Handle, std::marker::PhantomData<(R, W)>);
impl<R: IntoBytes + FromBytes, W: IntoBytes + FromBytes> Fifo<R, W> {
/// Create a pair of fifos and return their endpoints. Writing to one endpoint enqueues an
/// element into the fifo from which the opposing endpoint reads.
///
/// Wraps the
/// [zx_fifo_create](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_create.md)
/// syscall.
pub fn create(elem_count: usize) -> Result<(Self, Fifo<W, R>), Status> {
if std::mem::size_of::<R>() != std::mem::size_of::<W>() {
return Err(Status::INVALID_ARGS);
}
let mut out0 = 0;
let mut out1 = 0;
let options = 0;
// SAFETY: this is a basic FFI call, and the mutable references are valid pointers.
let status = unsafe {
sys::zx_fifo_create(elem_count, std::mem::size_of::<R>(), options, &mut out0, &mut out1)
};
ok(status)?;
// SAFETY: if the above call succeeded, these are valid handle numbers.
unsafe { Ok((Fifo::from(Handle::from_raw(out0)), Fifo::from(Handle::from_raw(out1)))) }
}
/// Attempts to write some number of elements into the fifo. On success, returns the number of
/// elements actually written.
///
/// Wraps
/// [zx_fifo_write](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_write.md).
pub fn write(&self, buf: &[W]) -> Result<usize, Status> {
// SAFETY: this pointer is valid for the length of the slice
unsafe { self.write_raw(buf.as_ptr(), buf.len()) }
}
/// Attempts to write a single element into the fifo.
///
/// Wraps
/// [zx_fifo_write](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_write.md).
pub fn write_one(&self, elem: &W) -> Result<(), Status> {
// SAFETY: this pointer is valid for a single element
unsafe { self.write_raw(elem, 1).map(|n| debug_assert_eq!(n, 1)) }
}
/// Attempts to write some number of elements into the fifo. On success, returns the number of
/// elements actually written.
///
/// Wraps
/// [zx_fifo_write](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_write.md).
///
/// # Safety
///
/// The caller is responsible for ensuring `buf` is valid to write to for `count` elements.
pub unsafe fn write_raw(&self, buf: *const W, count: usize) -> Result<usize, Status> {
let mut actual_count = 0;
// SAFETY: safety requirements for this call are upheld by our caller.
let status = unsafe {
sys::zx_fifo_write(
self.raw_handle(),
std::mem::size_of::<W>(),
buf.cast::<u8>(),
count,
&mut actual_count,
)
};
ok(status).map(|()| actual_count)
}
/// Attempts to read some elements out of the fifo. On success, returns the number of elements
/// actually read.
///
/// Wraps
/// [zx_fifo_read](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_read.md).
pub fn read(&self, buf: &mut [R]) -> Result<usize, Status> {
// SAFETY: the pointer is valid for the length of the slice
unsafe { self.read_raw(buf.as_mut_ptr(), buf.len()) }
}
/// Attempts to read a single element out of the fifo.
///
/// Wraps
/// [zx_fifo_read](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_read.md).
pub fn read_one(&self) -> Result<R, Status> {
let mut elem = MaybeUninit::uninit();
// SAFETY: the reference is valid to write to, and this call will not read from the bytes.
let valid_count = unsafe { self.read_raw(elem.as_mut_ptr(), 1)? };
debug_assert_eq!(valid_count, 1);
// SAFETY: if the previous call succeeded, the kernel has initialized this value.
Ok(unsafe { elem.assume_init() })
}
/// Attempts to read some number of elements out of the fifo. On success, returns a slice of
/// initialized elements.
///
/// Wraps
/// [zx_fifo_read](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_read.md).
pub fn read_uninit(&self, bytes: &mut [MaybeUninit<R>]) -> Result<&mut [R], Status> {
// SAFETY: the slice is valid to write to for its entire length, and this call will not
// read from the bytes
let valid_count = unsafe { self.read_raw(bytes.as_mut_ptr().cast::<R>(), bytes.len())? };
let (valid, _uninit) = bytes.split_at_mut(valid_count);
// SAFETY: the kernel initialized all bytes, strip out MaybeUninit
unsafe { Ok(std::slice::from_raw_parts_mut(valid.as_mut_ptr().cast::<R>(), valid.len())) }
}
/// Attempts to read some number of elements out of the fifo. On success, returns the number of
/// elements actually read.
///
/// Wraps
/// [zx_fifo_read](https://fuchsia.dev/fuchsia-src/reference/syscalls/fifo_read.md).
///
/// # Safety
///
/// The caller is responsible for ensuring `bytes` points to valid (albeit
/// not necessarily initialized) memory at least `len` bytes long.
pub unsafe fn read_raw(&self, buf: *mut R, count: usize) -> Result<usize, Status> {
let mut actual_count = 0;
// SAFETY: this call's invariants must be upheld by our caller.
let status = unsafe {
sys::zx_fifo_read(
self.raw_handle(),
std::mem::size_of::<R>(),
buf.cast::<u8>(),
count,
&mut actual_count,
)
};
ok(status).map(|()| actual_count)
}
}
impl Fifo<UnspecifiedFifoElement> {
/// Give a `Fifo` specific read/write types. The size of `R2` and `W2` must match
/// the element size the underlying handle was created with for reads and writes to succeed.
pub fn cast<R2, W2>(self) -> Fifo<R2, W2> {
Fifo::<R2, W2>::from(self.0)
}
}
impl<R, W> Fifo<R, W> {
/// Convert a fifo from having a specific element type to a fifo without any element type that
/// will not support reads or writes.
pub fn downcast(self) -> Fifo {
Fifo::from(self.0)
}
}
impl<R, W> AsHandleRef for Fifo<R, W> {
fn as_handle_ref(&self) -> HandleRef<'_> {
self.0.as_handle_ref()
}
}
impl<R, W> From<Handle> for Fifo<R, W> {
fn from(handle: Handle) -> Self {
Self(handle, std::marker::PhantomData)
}
}
impl<R, W> From<Fifo<R, W>> for Handle {
fn from(x: Fifo<R, W>) -> Handle {
x.0
}
}
impl<R: FromBytes + IntoBytes, W: FromBytes + IntoBytes> From<Fifo> for Fifo<R, W> {
fn from(untyped: Fifo) -> Self {
untyped.cast()
}
}
impl<R, W> HandleBased for Fifo<R, W> {}
impl<R, W> std::fmt::Debug for Fifo<R, W> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let read_name = std::any::type_name::<R>();
let (_, short_read_name) = read_name.rsplit_once("::").unwrap();
let write_name = std::any::type_name::<W>();
let (_, short_write_name) = write_name.rsplit_once("::").unwrap();
f.debug_tuple(&format!("Fifo<{short_read_name}, {short_write_name}>"))
.field(&self.0)
.finish()
}
}
impl<R, W> std::cmp::PartialEq for Fifo<R, W> {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0
}
}
impl<R, W> std::cmp::Eq for Fifo<R, W> {}
impl<R, W> std::cmp::PartialOrd for Fifo<R, W> {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
self.0.partial_cmp(&other.0)
}
}
impl<R, W> std::cmp::Ord for Fifo<R, W> {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.0.cmp(&other.0)
}
}
impl<R, W> std::hash::Hash for Fifo<R, W> {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.0.hash(state)
}
}
/// The default element for fifos, does not support reading or writing. Only used for IPC transfer.
#[derive(Copy, Clone, Debug)]
pub struct UnspecifiedFifoElement;
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn fifo_basic() {
let (fifo1, fifo2) = Fifo::<[u8; 2]>::create(4).unwrap();
// Trying to write less than one element should fail.
assert_eq!(fifo1.write(&[]), Err(Status::OUT_OF_RANGE));
// Should write one element "he"
fifo1.write_one(b"he").unwrap();
// Should write three elements "ll" "o " "wo" and drop the rest as it is full.
assert_eq!(fifo1.write(&[*b"ll", *b"o ", *b"wo", *b"rl", *b"ds"]).unwrap(), 3);
// Now that the fifo is full any further attempts to write should fail.
assert_eq!(fifo1.write(&[*b"bl", *b"ah", *b"bl", *b"ah"]), Err(Status::SHOULD_WAIT));
assert_eq!(fifo2.read_one().unwrap(), *b"he");
// Read remaining 3 entries from the other end.
let mut read_vec = vec![[0; 2]; 8];
assert_eq!(fifo2.read(&mut read_vec).unwrap(), 3);
assert_eq!(read_vec, &[*b"ll", *b"o ", *b"wo", [0, 0], [0, 0], [0, 0], [0, 0], [0, 0]]);
// Reading again should fail as the fifo is empty.
assert_eq!(fifo2.read(&mut read_vec), Err(Status::SHOULD_WAIT));
}
}