serde/de/mod.rs
1//! Generic data structure deserialization framework.
2//!
3//! The two most important traits in this module are [`Deserialize`] and
4//! [`Deserializer`].
5//!
6//! - **A type that implements `Deserialize` is a data structure** that can be
7//! deserialized from any data format supported by Serde, and conversely
8//! - **A type that implements `Deserializer` is a data format** that can
9//! deserialize any data structure supported by Serde.
10//!
11//! # The Deserialize trait
12//!
13//! Serde provides [`Deserialize`] implementations for many Rust primitive and
14//! standard library types. The complete list is below. All of these can be
15//! deserialized using Serde out of the box.
16//!
17//! Additionally, Serde provides a procedural macro called [`serde_derive`] to
18//! automatically generate [`Deserialize`] implementations for structs and enums
19//! in your program. See the [derive section of the manual] for how to use this.
20//!
21//! In rare cases it may be necessary to implement [`Deserialize`] manually for
22//! some type in your program. See the [Implementing `Deserialize`] section of
23//! the manual for more about this.
24//!
25//! Third-party crates may provide [`Deserialize`] implementations for types
26//! that they expose. For example the [`linked-hash-map`] crate provides a
27//! [`LinkedHashMap<K, V>`] type that is deserializable by Serde because the
28//! crate provides an implementation of [`Deserialize`] for it.
29//!
30//! # The Deserializer trait
31//!
32//! [`Deserializer`] implementations are provided by third-party crates, for
33//! example [`serde_json`], [`serde_yaml`] and [`postcard`].
34//!
35//! A partial list of well-maintained formats is given on the [Serde
36//! website][data formats].
37//!
38//! # Implementations of Deserialize provided by Serde
39//!
40//! This is a slightly different set of types than what is supported for
41//! serialization. Some types can be serialized by Serde but not deserialized.
42//! One example is `OsStr`.
43//!
44//! - **Primitive types**:
45//! - bool
46//! - i8, i16, i32, i64, i128, isize
47//! - u8, u16, u32, u64, u128, usize
48//! - f32, f64
49//! - char
50//! - **Compound types**:
51//! - \[T; 0\] through \[T; 32\]
52//! - tuples up to size 16
53//! - **Common standard library types**:
54//! - String
55//! - Option\<T\>
56//! - Result\<T, E\>
57//! - PhantomData\<T\>
58//! - **Wrapper types**:
59//! - Box\<T\>
60//! - Box\<\[T\]\>
61//! - Box\<str\>
62//! - Cow\<'a, T\>
63//! - Cell\<T\>
64//! - RefCell\<T\>
65//! - Mutex\<T\>
66//! - RwLock\<T\>
67//! - Rc\<T\> *(if* features = \["rc"\] *is enabled)*
68//! - Arc\<T\> *(if* features = \["rc"\] *is enabled)*
69//! - **Collection types**:
70//! - BTreeMap\<K, V\>
71//! - BTreeSet\<T\>
72//! - BinaryHeap\<T\>
73//! - HashMap\<K, V, H\>
74//! - HashSet\<T, H\>
75//! - LinkedList\<T\>
76//! - VecDeque\<T\>
77//! - Vec\<T\>
78//! - **Zero-copy types**:
79//! - &str
80//! - &\[u8\]
81//! - **FFI types**:
82//! - CString
83//! - Box\<CStr\>
84//! - OsString
85//! - **Miscellaneous standard library types**:
86//! - Duration
87//! - SystemTime
88//! - Path
89//! - PathBuf
90//! - Range\<T\>
91//! - RangeInclusive\<T\>
92//! - Bound\<T\>
93//! - num::NonZero*
94//! - `!` *(unstable)*
95//! - **Net types**:
96//! - IpAddr
97//! - Ipv4Addr
98//! - Ipv6Addr
99//! - SocketAddr
100//! - SocketAddrV4
101//! - SocketAddrV6
102//!
103//! [Implementing `Deserialize`]: https://serde.rs/impl-deserialize.html
104//! [`Deserialize`]: ../trait.Deserialize.html
105//! [`Deserializer`]: ../trait.Deserializer.html
106//! [`LinkedHashMap<K, V>`]: https://docs.rs/linked-hash-map/*/linked_hash_map/struct.LinkedHashMap.html
107//! [`postcard`]: https://github.com/jamesmunns/postcard
108//! [`linked-hash-map`]: https://crates.io/crates/linked-hash-map
109//! [`serde_derive`]: https://crates.io/crates/serde_derive
110//! [`serde_json`]: https://github.com/serde-rs/json
111//! [`serde_yaml`]: https://github.com/dtolnay/serde-yaml
112//! [derive section of the manual]: https://serde.rs/derive.html
113//! [data formats]: https://serde.rs/#data-formats
114
115use crate::lib::*;
116
117////////////////////////////////////////////////////////////////////////////////
118
119pub mod value;
120
121mod format;
122mod ignored_any;
123mod impls;
124pub(crate) mod size_hint;
125
126pub use self::ignored_any::IgnoredAny;
127
128#[cfg(not(any(feature = "std", feature = "unstable")))]
129#[doc(no_inline)]
130pub use crate::std_error::Error as StdError;
131#[cfg(all(feature = "unstable", not(feature = "std")))]
132#[doc(no_inline)]
133pub use core::error::Error as StdError;
134#[cfg(feature = "std")]
135#[doc(no_inline)]
136pub use std::error::Error as StdError;
137
138////////////////////////////////////////////////////////////////////////////////
139
140macro_rules! declare_error_trait {
141 (Error: Sized $(+ $($supertrait:ident)::+)*) => {
142 /// The `Error` trait allows `Deserialize` implementations to create descriptive
143 /// error messages belonging to the `Deserializer` against which they are
144 /// currently running.
145 ///
146 /// Every `Deserializer` declares an `Error` type that encompasses both
147 /// general-purpose deserialization errors as well as errors specific to the
148 /// particular deserialization format. For example the `Error` type of
149 /// `serde_json` can represent errors like an invalid JSON escape sequence or an
150 /// unterminated string literal, in addition to the error cases that are part of
151 /// this trait.
152 ///
153 /// Most deserializers should only need to provide the `Error::custom` method
154 /// and inherit the default behavior for the other methods.
155 ///
156 /// # Example implementation
157 ///
158 /// The [example data format] presented on the website shows an error
159 /// type appropriate for a basic JSON data format.
160 ///
161 /// [example data format]: https://serde.rs/data-format.html
162 pub trait Error: Sized $(+ $($supertrait)::+)* {
163 /// Raised when there is general error when deserializing a type.
164 ///
165 /// The message should not be capitalized and should not end with a period.
166 ///
167 /// ```edition2021
168 /// # use std::str::FromStr;
169 /// #
170 /// # struct IpAddr;
171 /// #
172 /// # impl FromStr for IpAddr {
173 /// # type Err = String;
174 /// #
175 /// # fn from_str(_: &str) -> Result<Self, String> {
176 /// # unimplemented!()
177 /// # }
178 /// # }
179 /// #
180 /// use serde::de::{self, Deserialize, Deserializer};
181 ///
182 /// impl<'de> Deserialize<'de> for IpAddr {
183 /// fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
184 /// where
185 /// D: Deserializer<'de>,
186 /// {
187 /// let s = String::deserialize(deserializer)?;
188 /// s.parse().map_err(de::Error::custom)
189 /// }
190 /// }
191 /// ```
192 fn custom<T>(msg: T) -> Self
193 where
194 T: Display;
195
196 /// Raised when a `Deserialize` receives a type different from what it was
197 /// expecting.
198 ///
199 /// The `unexp` argument provides information about what type was received.
200 /// This is the type that was present in the input file or other source data
201 /// of the Deserializer.
202 ///
203 /// The `exp` argument provides information about what type was being
204 /// expected. This is the type that is written in the program.
205 ///
206 /// For example if we try to deserialize a String out of a JSON file
207 /// containing an integer, the unexpected type is the integer and the
208 /// expected type is the string.
209 #[cold]
210 fn invalid_type(unexp: Unexpected, exp: &Expected) -> Self {
211 Error::custom(format_args!("invalid type: {}, expected {}", unexp, exp))
212 }
213
214 /// Raised when a `Deserialize` receives a value of the right type but that
215 /// is wrong for some other reason.
216 ///
217 /// The `unexp` argument provides information about what value was received.
218 /// This is the value that was present in the input file or other source
219 /// data of the Deserializer.
220 ///
221 /// The `exp` argument provides information about what value was being
222 /// expected. This is the type that is written in the program.
223 ///
224 /// For example if we try to deserialize a String out of some binary data
225 /// that is not valid UTF-8, the unexpected value is the bytes and the
226 /// expected value is a string.
227 #[cold]
228 fn invalid_value(unexp: Unexpected, exp: &Expected) -> Self {
229 Error::custom(format_args!("invalid value: {}, expected {}", unexp, exp))
230 }
231
232 /// Raised when deserializing a sequence or map and the input data contains
233 /// too many or too few elements.
234 ///
235 /// The `len` argument is the number of elements encountered. The sequence
236 /// or map may have expected more arguments or fewer arguments.
237 ///
238 /// The `exp` argument provides information about what data was being
239 /// expected. For example `exp` might say that a tuple of size 6 was
240 /// expected.
241 #[cold]
242 fn invalid_length(len: usize, exp: &Expected) -> Self {
243 Error::custom(format_args!("invalid length {}, expected {}", len, exp))
244 }
245
246 /// Raised when a `Deserialize` enum type received a variant with an
247 /// unrecognized name.
248 #[cold]
249 fn unknown_variant(variant: &str, expected: &'static [&'static str]) -> Self {
250 if expected.is_empty() {
251 Error::custom(format_args!(
252 "unknown variant `{}`, there are no variants",
253 variant
254 ))
255 } else {
256 Error::custom(format_args!(
257 "unknown variant `{}`, expected {}",
258 variant,
259 OneOf { names: expected }
260 ))
261 }
262 }
263
264 /// Raised when a `Deserialize` struct type received a field with an
265 /// unrecognized name.
266 #[cold]
267 fn unknown_field(field: &str, expected: &'static [&'static str]) -> Self {
268 if expected.is_empty() {
269 Error::custom(format_args!(
270 "unknown field `{}`, there are no fields",
271 field
272 ))
273 } else {
274 Error::custom(format_args!(
275 "unknown field `{}`, expected {}",
276 field,
277 OneOf { names: expected }
278 ))
279 }
280 }
281
282 /// Raised when a `Deserialize` struct type expected to receive a required
283 /// field with a particular name but that field was not present in the
284 /// input.
285 #[cold]
286 fn missing_field(field: &'static str) -> Self {
287 Error::custom(format_args!("missing field `{}`", field))
288 }
289
290 /// Raised when a `Deserialize` struct type received more than one of the
291 /// same field.
292 #[cold]
293 fn duplicate_field(field: &'static str) -> Self {
294 Error::custom(format_args!("duplicate field `{}`", field))
295 }
296 }
297 }
298}
299
300#[cfg(feature = "std")]
301declare_error_trait!(Error: Sized + StdError);
302
303#[cfg(not(feature = "std"))]
304declare_error_trait!(Error: Sized + Debug + Display);
305
306/// `Unexpected` represents an unexpected invocation of any one of the `Visitor`
307/// trait methods.
308///
309/// This is used as an argument to the `invalid_type`, `invalid_value`, and
310/// `invalid_length` methods of the `Error` trait to build error messages.
311///
312/// ```edition2021
313/// # use std::fmt;
314/// #
315/// # use serde::de::{self, Unexpected, Visitor};
316/// #
317/// # struct Example;
318/// #
319/// # impl<'de> Visitor<'de> for Example {
320/// # type Value = ();
321/// #
322/// # fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
323/// # write!(formatter, "definitely not a boolean")
324/// # }
325/// #
326/// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
327/// where
328/// E: de::Error,
329/// {
330/// Err(de::Error::invalid_type(Unexpected::Bool(v), &self))
331/// }
332/// # }
333/// ```
334#[derive(Copy, Clone, PartialEq, Debug)]
335pub enum Unexpected<'a> {
336 /// The input contained a boolean value that was not expected.
337 Bool(bool),
338
339 /// The input contained an unsigned integer `u8`, `u16`, `u32` or `u64` that
340 /// was not expected.
341 Unsigned(u64),
342
343 /// The input contained a signed integer `i8`, `i16`, `i32` or `i64` that
344 /// was not expected.
345 Signed(i64),
346
347 /// The input contained a floating point `f32` or `f64` that was not
348 /// expected.
349 Float(f64),
350
351 /// The input contained a `char` that was not expected.
352 Char(char),
353
354 /// The input contained a `&str` or `String` that was not expected.
355 Str(&'a str),
356
357 /// The input contained a `&[u8]` or `Vec<u8>` that was not expected.
358 Bytes(&'a [u8]),
359
360 /// The input contained a unit `()` that was not expected.
361 Unit,
362
363 /// The input contained an `Option<T>` that was not expected.
364 Option,
365
366 /// The input contained a newtype struct that was not expected.
367 NewtypeStruct,
368
369 /// The input contained a sequence that was not expected.
370 Seq,
371
372 /// The input contained a map that was not expected.
373 Map,
374
375 /// The input contained an enum that was not expected.
376 Enum,
377
378 /// The input contained a unit variant that was not expected.
379 UnitVariant,
380
381 /// The input contained a newtype variant that was not expected.
382 NewtypeVariant,
383
384 /// The input contained a tuple variant that was not expected.
385 TupleVariant,
386
387 /// The input contained a struct variant that was not expected.
388 StructVariant,
389
390 /// A message stating what uncategorized thing the input contained that was
391 /// not expected.
392 ///
393 /// The message should be a noun or noun phrase, not capitalized and without
394 /// a period. An example message is "unoriginal superhero".
395 Other(&'a str),
396}
397
398impl<'a> fmt::Display for Unexpected<'a> {
399 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
400 use self::Unexpected::*;
401 match *self {
402 Bool(b) => write!(formatter, "boolean `{}`", b),
403 Unsigned(i) => write!(formatter, "integer `{}`", i),
404 Signed(i) => write!(formatter, "integer `{}`", i),
405 Float(f) => write!(formatter, "floating point `{}`", WithDecimalPoint(f)),
406 Char(c) => write!(formatter, "character `{}`", c),
407 Str(s) => write!(formatter, "string {:?}", s),
408 Bytes(_) => formatter.write_str("byte array"),
409 Unit => formatter.write_str("unit value"),
410 Option => formatter.write_str("Option value"),
411 NewtypeStruct => formatter.write_str("newtype struct"),
412 Seq => formatter.write_str("sequence"),
413 Map => formatter.write_str("map"),
414 Enum => formatter.write_str("enum"),
415 UnitVariant => formatter.write_str("unit variant"),
416 NewtypeVariant => formatter.write_str("newtype variant"),
417 TupleVariant => formatter.write_str("tuple variant"),
418 StructVariant => formatter.write_str("struct variant"),
419 Other(other) => formatter.write_str(other),
420 }
421 }
422}
423
424/// `Expected` represents an explanation of what data a `Visitor` was expecting
425/// to receive.
426///
427/// This is used as an argument to the `invalid_type`, `invalid_value`, and
428/// `invalid_length` methods of the `Error` trait to build error messages. The
429/// message should be a noun or noun phrase that completes the sentence "This
430/// Visitor expects to receive ...", for example the message could be "an
431/// integer between 0 and 64". The message should not be capitalized and should
432/// not end with a period.
433///
434/// Within the context of a `Visitor` implementation, the `Visitor` itself
435/// (`&self`) is an implementation of this trait.
436///
437/// ```edition2021
438/// # use serde::de::{self, Unexpected, Visitor};
439/// # use std::fmt;
440/// #
441/// # struct Example;
442/// #
443/// # impl<'de> Visitor<'de> for Example {
444/// # type Value = ();
445/// #
446/// # fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
447/// # write!(formatter, "definitely not a boolean")
448/// # }
449/// #
450/// fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
451/// where
452/// E: de::Error,
453/// {
454/// Err(de::Error::invalid_type(Unexpected::Bool(v), &self))
455/// }
456/// # }
457/// ```
458///
459/// Outside of a `Visitor`, `&"..."` can be used.
460///
461/// ```edition2021
462/// # use serde::de::{self, Unexpected};
463/// #
464/// # fn example<E>() -> Result<(), E>
465/// # where
466/// # E: de::Error,
467/// # {
468/// # let v = true;
469/// return Err(de::Error::invalid_type(
470/// Unexpected::Bool(v),
471/// &"a negative integer",
472/// ));
473/// # }
474/// ```
475pub trait Expected {
476 /// Format an explanation of what data was being expected. Same signature as
477 /// the `Display` and `Debug` traits.
478 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result;
479}
480
481impl<'de, T> Expected for T
482where
483 T: Visitor<'de>,
484{
485 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
486 self.expecting(formatter)
487 }
488}
489
490impl<'a> Expected for &'a str {
491 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
492 formatter.write_str(self)
493 }
494}
495
496impl<'a> Display for Expected + 'a {
497 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
498 Expected::fmt(self, formatter)
499 }
500}
501
502////////////////////////////////////////////////////////////////////////////////
503
504/// A **data structure** that can be deserialized from any data format supported
505/// by Serde.
506///
507/// Serde provides `Deserialize` implementations for many Rust primitive and
508/// standard library types. The complete list is [here][crate::de]. All of these
509/// can be deserialized using Serde out of the box.
510///
511/// Additionally, Serde provides a procedural macro called `serde_derive` to
512/// automatically generate `Deserialize` implementations for structs and enums
513/// in your program. See the [derive section of the manual][derive] for how to
514/// use this.
515///
516/// In rare cases it may be necessary to implement `Deserialize` manually for
517/// some type in your program. See the [Implementing
518/// `Deserialize`][impl-deserialize] section of the manual for more about this.
519///
520/// Third-party crates may provide `Deserialize` implementations for types that
521/// they expose. For example the `linked-hash-map` crate provides a
522/// `LinkedHashMap<K, V>` type that is deserializable by Serde because the crate
523/// provides an implementation of `Deserialize` for it.
524///
525/// [derive]: https://serde.rs/derive.html
526/// [impl-deserialize]: https://serde.rs/impl-deserialize.html
527///
528/// # Lifetime
529///
530/// The `'de` lifetime of this trait is the lifetime of data that may be
531/// borrowed by `Self` when deserialized. See the page [Understanding
532/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
533///
534/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
535#[cfg_attr(
536 not(no_diagnostic_namespace),
537 diagnostic::on_unimplemented(
538 note = "for local types consider adding `#[derive(serde::Deserialize)]` to your `{Self}` type",
539 note = "for types from other crates check whether the crate offers a `serde` feature flag",
540 )
541)]
542pub trait Deserialize<'de>: Sized {
543 /// Deserialize this value from the given Serde deserializer.
544 ///
545 /// See the [Implementing `Deserialize`][impl-deserialize] section of the
546 /// manual for more information about how to implement this method.
547 ///
548 /// [impl-deserialize]: https://serde.rs/impl-deserialize.html
549 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
550 where
551 D: Deserializer<'de>;
552
553 /// Deserializes a value into `self` from the given Deserializer.
554 ///
555 /// The purpose of this method is to allow the deserializer to reuse
556 /// resources and avoid copies. As such, if this method returns an error,
557 /// `self` will be in an indeterminate state where some parts of the struct
558 /// have been overwritten. Although whatever state that is will be
559 /// memory-safe.
560 ///
561 /// This is generally useful when repeatedly deserializing values that
562 /// are processed one at a time, where the value of `self` doesn't matter
563 /// when the next deserialization occurs.
564 ///
565 /// If you manually implement this, your recursive deserializations should
566 /// use `deserialize_in_place`.
567 ///
568 /// This method is stable and an official public API, but hidden from the
569 /// documentation because it is almost never what newbies are looking for.
570 /// Showing it in rustdoc would cause it to be featured more prominently
571 /// than it deserves.
572 #[doc(hidden)]
573 fn deserialize_in_place<D>(deserializer: D, place: &mut Self) -> Result<(), D::Error>
574 where
575 D: Deserializer<'de>,
576 {
577 // Default implementation just delegates to `deserialize` impl.
578 *place = tri!(Deserialize::deserialize(deserializer));
579 Ok(())
580 }
581}
582
583/// A data structure that can be deserialized without borrowing any data from
584/// the deserializer.
585///
586/// This is primarily useful for trait bounds on functions. For example a
587/// `from_str` function may be able to deserialize a data structure that borrows
588/// from the input string, but a `from_reader` function may only deserialize
589/// owned data.
590///
591/// ```edition2021
592/// # use serde::de::{Deserialize, DeserializeOwned};
593/// # use std::io::{Read, Result};
594/// #
595/// # trait Ignore {
596/// fn from_str<'a, T>(s: &'a str) -> Result<T>
597/// where
598/// T: Deserialize<'a>;
599///
600/// fn from_reader<R, T>(rdr: R) -> Result<T>
601/// where
602/// R: Read,
603/// T: DeserializeOwned;
604/// # }
605/// ```
606///
607/// # Lifetime
608///
609/// The relationship between `Deserialize` and `DeserializeOwned` in trait
610/// bounds is explained in more detail on the page [Understanding deserializer
611/// lifetimes].
612///
613/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
614pub trait DeserializeOwned: for<'de> Deserialize<'de> {}
615impl<T> DeserializeOwned for T where T: for<'de> Deserialize<'de> {}
616
617/// `DeserializeSeed` is the stateful form of the `Deserialize` trait. If you
618/// ever find yourself looking for a way to pass data into a `Deserialize` impl,
619/// this trait is the way to do it.
620///
621/// As one example of stateful deserialization consider deserializing a JSON
622/// array into an existing buffer. Using the `Deserialize` trait we could
623/// deserialize a JSON array into a `Vec<T>` but it would be a freshly allocated
624/// `Vec<T>`; there is no way for `Deserialize` to reuse a previously allocated
625/// buffer. Using `DeserializeSeed` instead makes this possible as in the
626/// example code below.
627///
628/// The canonical API for stateless deserialization looks like this:
629///
630/// ```edition2021
631/// # use serde::Deserialize;
632/// #
633/// # enum Error {}
634/// #
635/// fn func<'de, T: Deserialize<'de>>() -> Result<T, Error>
636/// # {
637/// # unimplemented!()
638/// # }
639/// ```
640///
641/// Adjusting an API like this to support stateful deserialization is a matter
642/// of accepting a seed as input:
643///
644/// ```edition2021
645/// # use serde::de::DeserializeSeed;
646/// #
647/// # enum Error {}
648/// #
649/// fn func_seed<'de, T: DeserializeSeed<'de>>(seed: T) -> Result<T::Value, Error>
650/// # {
651/// # let _ = seed;
652/// # unimplemented!()
653/// # }
654/// ```
655///
656/// In practice the majority of deserialization is stateless. An API expecting a
657/// seed can be appeased by passing `std::marker::PhantomData` as a seed in the
658/// case of stateless deserialization.
659///
660/// # Lifetime
661///
662/// The `'de` lifetime of this trait is the lifetime of data that may be
663/// borrowed by `Self::Value` when deserialized. See the page [Understanding
664/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
665///
666/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
667///
668/// # Example
669///
670/// Suppose we have JSON that looks like `[[1, 2], [3, 4, 5], [6]]` and we need
671/// to deserialize it into a flat representation like `vec![1, 2, 3, 4, 5, 6]`.
672/// Allocating a brand new `Vec<T>` for each subarray would be slow. Instead we
673/// would like to allocate a single `Vec<T>` and then deserialize each subarray
674/// into it. This requires stateful deserialization using the `DeserializeSeed`
675/// trait.
676///
677/// ```edition2021
678/// use serde::de::{Deserialize, DeserializeSeed, Deserializer, SeqAccess, Visitor};
679/// use std::fmt;
680/// use std::marker::PhantomData;
681///
682/// // A DeserializeSeed implementation that uses stateful deserialization to
683/// // append array elements onto the end of an existing vector. The preexisting
684/// // state ("seed") in this case is the Vec<T>. The `deserialize` method of
685/// // `ExtendVec` will be traversing the inner arrays of the JSON input and
686/// // appending each integer into the existing Vec.
687/// struct ExtendVec<'a, T: 'a>(&'a mut Vec<T>);
688///
689/// impl<'de, 'a, T> DeserializeSeed<'de> for ExtendVec<'a, T>
690/// where
691/// T: Deserialize<'de>,
692/// {
693/// // The return type of the `deserialize` method. This implementation
694/// // appends onto an existing vector but does not create any new data
695/// // structure, so the return type is ().
696/// type Value = ();
697///
698/// fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
699/// where
700/// D: Deserializer<'de>,
701/// {
702/// // Visitor implementation that will walk an inner array of the JSON
703/// // input.
704/// struct ExtendVecVisitor<'a, T: 'a>(&'a mut Vec<T>);
705///
706/// impl<'de, 'a, T> Visitor<'de> for ExtendVecVisitor<'a, T>
707/// where
708/// T: Deserialize<'de>,
709/// {
710/// type Value = ();
711///
712/// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
713/// write!(formatter, "an array of integers")
714/// }
715///
716/// fn visit_seq<A>(self, mut seq: A) -> Result<(), A::Error>
717/// where
718/// A: SeqAccess<'de>,
719/// {
720/// // Decrease the number of reallocations if there are many elements
721/// if let Some(size_hint) = seq.size_hint() {
722/// self.0.reserve(size_hint);
723/// }
724///
725/// // Visit each element in the inner array and push it onto
726/// // the existing vector.
727/// while let Some(elem) = seq.next_element()? {
728/// self.0.push(elem);
729/// }
730/// Ok(())
731/// }
732/// }
733///
734/// deserializer.deserialize_seq(ExtendVecVisitor(self.0))
735/// }
736/// }
737///
738/// // Visitor implementation that will walk the outer array of the JSON input.
739/// struct FlattenedVecVisitor<T>(PhantomData<T>);
740///
741/// impl<'de, T> Visitor<'de> for FlattenedVecVisitor<T>
742/// where
743/// T: Deserialize<'de>,
744/// {
745/// // This Visitor constructs a single Vec<T> to hold the flattened
746/// // contents of the inner arrays.
747/// type Value = Vec<T>;
748///
749/// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
750/// write!(formatter, "an array of arrays")
751/// }
752///
753/// fn visit_seq<A>(self, mut seq: A) -> Result<Vec<T>, A::Error>
754/// where
755/// A: SeqAccess<'de>,
756/// {
757/// // Create a single Vec to hold the flattened contents.
758/// let mut vec = Vec::new();
759///
760/// // Each iteration through this loop is one inner array.
761/// while let Some(()) = seq.next_element_seed(ExtendVec(&mut vec))? {
762/// // Nothing to do; inner array has been appended into `vec`.
763/// }
764///
765/// // Return the finished vec.
766/// Ok(vec)
767/// }
768/// }
769///
770/// # fn example<'de, D>(deserializer: D) -> Result<(), D::Error>
771/// # where
772/// # D: Deserializer<'de>,
773/// # {
774/// let visitor = FlattenedVecVisitor(PhantomData);
775/// let flattened: Vec<u64> = deserializer.deserialize_seq(visitor)?;
776/// # Ok(())
777/// # }
778/// ```
779pub trait DeserializeSeed<'de>: Sized {
780 /// The type produced by using this seed.
781 type Value;
782
783 /// Equivalent to the more common `Deserialize::deserialize` method, except
784 /// with some initial piece of data (the seed) passed in.
785 fn deserialize<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
786 where
787 D: Deserializer<'de>;
788}
789
790impl<'de, T> DeserializeSeed<'de> for PhantomData<T>
791where
792 T: Deserialize<'de>,
793{
794 type Value = T;
795
796 #[inline]
797 fn deserialize<D>(self, deserializer: D) -> Result<T, D::Error>
798 where
799 D: Deserializer<'de>,
800 {
801 T::deserialize(deserializer)
802 }
803}
804
805////////////////////////////////////////////////////////////////////////////////
806
807/// A **data format** that can deserialize any data structure supported by
808/// Serde.
809///
810/// The role of this trait is to define the deserialization half of the [Serde
811/// data model], which is a way to categorize every Rust data type into one of
812/// 29 possible types. Each method of the `Deserializer` trait corresponds to one
813/// of the types of the data model.
814///
815/// Implementations of `Deserialize` map themselves into this data model by
816/// passing to the `Deserializer` a `Visitor` implementation that can receive
817/// these various types.
818///
819/// The types that make up the Serde data model are:
820///
821/// - **14 primitive types**
822/// - bool
823/// - i8, i16, i32, i64, i128
824/// - u8, u16, u32, u64, u128
825/// - f32, f64
826/// - char
827/// - **string**
828/// - UTF-8 bytes with a length and no null terminator.
829/// - When serializing, all strings are handled equally. When deserializing,
830/// there are three flavors of strings: transient, owned, and borrowed.
831/// - **byte array** - \[u8\]
832/// - Similar to strings, during deserialization byte arrays can be
833/// transient, owned, or borrowed.
834/// - **option**
835/// - Either none or some value.
836/// - **unit**
837/// - The type of `()` in Rust. It represents an anonymous value containing
838/// no data.
839/// - **unit_struct**
840/// - For example `struct Unit` or `PhantomData<T>`. It represents a named
841/// value containing no data.
842/// - **unit_variant**
843/// - For example the `E::A` and `E::B` in `enum E { A, B }`.
844/// - **newtype_struct**
845/// - For example `struct Millimeters(u8)`.
846/// - **newtype_variant**
847/// - For example the `E::N` in `enum E { N(u8) }`.
848/// - **seq**
849/// - A variably sized heterogeneous sequence of values, for example `Vec<T>`
850/// or `HashSet<T>`. When serializing, the length may or may not be known
851/// before iterating through all the data. When deserializing, the length
852/// is determined by looking at the serialized data.
853/// - **tuple**
854/// - A statically sized heterogeneous sequence of values for which the
855/// length will be known at deserialization time without looking at the
856/// serialized data, for example `(u8,)` or `(String, u64, Vec<T>)` or
857/// `[u64; 10]`.
858/// - **tuple_struct**
859/// - A named tuple, for example `struct Rgb(u8, u8, u8)`.
860/// - **tuple_variant**
861/// - For example the `E::T` in `enum E { T(u8, u8) }`.
862/// - **map**
863/// - A heterogeneous key-value pairing, for example `BTreeMap<K, V>`.
864/// - **struct**
865/// - A heterogeneous key-value pairing in which the keys are strings and
866/// will be known at deserialization time without looking at the serialized
867/// data, for example `struct S { r: u8, g: u8, b: u8 }`.
868/// - **struct_variant**
869/// - For example the `E::S` in `enum E { S { r: u8, g: u8, b: u8 } }`.
870///
871/// The `Deserializer` trait supports two entry point styles which enables
872/// different kinds of deserialization.
873///
874/// 1. The `deserialize_any` method. Self-describing data formats like JSON are
875/// able to look at the serialized data and tell what it represents. For
876/// example the JSON deserializer may see an opening curly brace (`{`) and
877/// know that it is seeing a map. If the data format supports
878/// `Deserializer::deserialize_any`, it will drive the Visitor using whatever
879/// type it sees in the input. JSON uses this approach when deserializing
880/// `serde_json::Value` which is an enum that can represent any JSON
881/// document. Without knowing what is in a JSON document, we can deserialize
882/// it to `serde_json::Value` by going through
883/// `Deserializer::deserialize_any`.
884///
885/// 2. The various `deserialize_*` methods. Non-self-describing formats like
886/// Postcard need to be told what is in the input in order to deserialize it.
887/// The `deserialize_*` methods are hints to the deserializer for how to
888/// interpret the next piece of input. Non-self-describing formats are not
889/// able to deserialize something like `serde_json::Value` which relies on
890/// `Deserializer::deserialize_any`.
891///
892/// When implementing `Deserialize`, you should avoid relying on
893/// `Deserializer::deserialize_any` unless you need to be told by the
894/// Deserializer what type is in the input. Know that relying on
895/// `Deserializer::deserialize_any` means your data type will be able to
896/// deserialize from self-describing formats only, ruling out Postcard and many
897/// others.
898///
899/// [Serde data model]: https://serde.rs/data-model.html
900///
901/// # Lifetime
902///
903/// The `'de` lifetime of this trait is the lifetime of data that may be
904/// borrowed from the input when deserializing. See the page [Understanding
905/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
906///
907/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
908///
909/// # Example implementation
910///
911/// The [example data format] presented on the website contains example code for
912/// a basic JSON `Deserializer`.
913///
914/// [example data format]: https://serde.rs/data-format.html
915pub trait Deserializer<'de>: Sized {
916 /// The error type that can be returned if some error occurs during
917 /// deserialization.
918 type Error: Error;
919
920 /// Require the `Deserializer` to figure out how to drive the visitor based
921 /// on what data type is in the input.
922 ///
923 /// When implementing `Deserialize`, you should avoid relying on
924 /// `Deserializer::deserialize_any` unless you need to be told by the
925 /// Deserializer what type is in the input. Know that relying on
926 /// `Deserializer::deserialize_any` means your data type will be able to
927 /// deserialize from self-describing formats only, ruling out Postcard and
928 /// many others.
929 fn deserialize_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
930 where
931 V: Visitor<'de>;
932
933 /// Hint that the `Deserialize` type is expecting a `bool` value.
934 fn deserialize_bool<V>(self, visitor: V) -> Result<V::Value, Self::Error>
935 where
936 V: Visitor<'de>;
937
938 /// Hint that the `Deserialize` type is expecting an `i8` value.
939 fn deserialize_i8<V>(self, visitor: V) -> Result<V::Value, Self::Error>
940 where
941 V: Visitor<'de>;
942
943 /// Hint that the `Deserialize` type is expecting an `i16` value.
944 fn deserialize_i16<V>(self, visitor: V) -> Result<V::Value, Self::Error>
945 where
946 V: Visitor<'de>;
947
948 /// Hint that the `Deserialize` type is expecting an `i32` value.
949 fn deserialize_i32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
950 where
951 V: Visitor<'de>;
952
953 /// Hint that the `Deserialize` type is expecting an `i64` value.
954 fn deserialize_i64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
955 where
956 V: Visitor<'de>;
957
958 /// Hint that the `Deserialize` type is expecting an `i128` value.
959 ///
960 /// The default behavior unconditionally returns an error.
961 fn deserialize_i128<V>(self, visitor: V) -> Result<V::Value, Self::Error>
962 where
963 V: Visitor<'de>,
964 {
965 let _ = visitor;
966 Err(Error::custom("i128 is not supported"))
967 }
968
969 /// Hint that the `Deserialize` type is expecting a `u8` value.
970 fn deserialize_u8<V>(self, visitor: V) -> Result<V::Value, Self::Error>
971 where
972 V: Visitor<'de>;
973
974 /// Hint that the `Deserialize` type is expecting a `u16` value.
975 fn deserialize_u16<V>(self, visitor: V) -> Result<V::Value, Self::Error>
976 where
977 V: Visitor<'de>;
978
979 /// Hint that the `Deserialize` type is expecting a `u32` value.
980 fn deserialize_u32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
981 where
982 V: Visitor<'de>;
983
984 /// Hint that the `Deserialize` type is expecting a `u64` value.
985 fn deserialize_u64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
986 where
987 V: Visitor<'de>;
988
989 /// Hint that the `Deserialize` type is expecting an `u128` value.
990 ///
991 /// The default behavior unconditionally returns an error.
992 fn deserialize_u128<V>(self, visitor: V) -> Result<V::Value, Self::Error>
993 where
994 V: Visitor<'de>,
995 {
996 let _ = visitor;
997 Err(Error::custom("u128 is not supported"))
998 }
999
1000 /// Hint that the `Deserialize` type is expecting a `f32` value.
1001 fn deserialize_f32<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1002 where
1003 V: Visitor<'de>;
1004
1005 /// Hint that the `Deserialize` type is expecting a `f64` value.
1006 fn deserialize_f64<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1007 where
1008 V: Visitor<'de>;
1009
1010 /// Hint that the `Deserialize` type is expecting a `char` value.
1011 fn deserialize_char<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1012 where
1013 V: Visitor<'de>;
1014
1015 /// Hint that the `Deserialize` type is expecting a string value and does
1016 /// not benefit from taking ownership of buffered data owned by the
1017 /// `Deserializer`.
1018 ///
1019 /// If the `Visitor` would benefit from taking ownership of `String` data,
1020 /// indicate this to the `Deserializer` by using `deserialize_string`
1021 /// instead.
1022 fn deserialize_str<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1023 where
1024 V: Visitor<'de>;
1025
1026 /// Hint that the `Deserialize` type is expecting a string value and would
1027 /// benefit from taking ownership of buffered data owned by the
1028 /// `Deserializer`.
1029 ///
1030 /// If the `Visitor` would not benefit from taking ownership of `String`
1031 /// data, indicate that to the `Deserializer` by using `deserialize_str`
1032 /// instead.
1033 fn deserialize_string<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1034 where
1035 V: Visitor<'de>;
1036
1037 /// Hint that the `Deserialize` type is expecting a byte array and does not
1038 /// benefit from taking ownership of buffered data owned by the
1039 /// `Deserializer`.
1040 ///
1041 /// If the `Visitor` would benefit from taking ownership of `Vec<u8>` data,
1042 /// indicate this to the `Deserializer` by using `deserialize_byte_buf`
1043 /// instead.
1044 fn deserialize_bytes<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1045 where
1046 V: Visitor<'de>;
1047
1048 /// Hint that the `Deserialize` type is expecting a byte array and would
1049 /// benefit from taking ownership of buffered data owned by the
1050 /// `Deserializer`.
1051 ///
1052 /// If the `Visitor` would not benefit from taking ownership of `Vec<u8>`
1053 /// data, indicate that to the `Deserializer` by using `deserialize_bytes`
1054 /// instead.
1055 fn deserialize_byte_buf<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1056 where
1057 V: Visitor<'de>;
1058
1059 /// Hint that the `Deserialize` type is expecting an optional value.
1060 ///
1061 /// This allows deserializers that encode an optional value as a nullable
1062 /// value to convert the null value into `None` and a regular value into
1063 /// `Some(value)`.
1064 fn deserialize_option<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1065 where
1066 V: Visitor<'de>;
1067
1068 /// Hint that the `Deserialize` type is expecting a unit value.
1069 fn deserialize_unit<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1070 where
1071 V: Visitor<'de>;
1072
1073 /// Hint that the `Deserialize` type is expecting a unit struct with a
1074 /// particular name.
1075 fn deserialize_unit_struct<V>(
1076 self,
1077 name: &'static str,
1078 visitor: V,
1079 ) -> Result<V::Value, Self::Error>
1080 where
1081 V: Visitor<'de>;
1082
1083 /// Hint that the `Deserialize` type is expecting a newtype struct with a
1084 /// particular name.
1085 fn deserialize_newtype_struct<V>(
1086 self,
1087 name: &'static str,
1088 visitor: V,
1089 ) -> Result<V::Value, Self::Error>
1090 where
1091 V: Visitor<'de>;
1092
1093 /// Hint that the `Deserialize` type is expecting a sequence of values.
1094 fn deserialize_seq<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1095 where
1096 V: Visitor<'de>;
1097
1098 /// Hint that the `Deserialize` type is expecting a sequence of values and
1099 /// knows how many values there are without looking at the serialized data.
1100 fn deserialize_tuple<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
1101 where
1102 V: Visitor<'de>;
1103
1104 /// Hint that the `Deserialize` type is expecting a tuple struct with a
1105 /// particular name and number of fields.
1106 fn deserialize_tuple_struct<V>(
1107 self,
1108 name: &'static str,
1109 len: usize,
1110 visitor: V,
1111 ) -> Result<V::Value, Self::Error>
1112 where
1113 V: Visitor<'de>;
1114
1115 /// Hint that the `Deserialize` type is expecting a map of key-value pairs.
1116 fn deserialize_map<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1117 where
1118 V: Visitor<'de>;
1119
1120 /// Hint that the `Deserialize` type is expecting a struct with a particular
1121 /// name and fields.
1122 fn deserialize_struct<V>(
1123 self,
1124 name: &'static str,
1125 fields: &'static [&'static str],
1126 visitor: V,
1127 ) -> Result<V::Value, Self::Error>
1128 where
1129 V: Visitor<'de>;
1130
1131 /// Hint that the `Deserialize` type is expecting an enum value with a
1132 /// particular name and possible variants.
1133 fn deserialize_enum<V>(
1134 self,
1135 name: &'static str,
1136 variants: &'static [&'static str],
1137 visitor: V,
1138 ) -> Result<V::Value, Self::Error>
1139 where
1140 V: Visitor<'de>;
1141
1142 /// Hint that the `Deserialize` type is expecting the name of a struct
1143 /// field or the discriminant of an enum variant.
1144 fn deserialize_identifier<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1145 where
1146 V: Visitor<'de>;
1147
1148 /// Hint that the `Deserialize` type needs to deserialize a value whose type
1149 /// doesn't matter because it is ignored.
1150 ///
1151 /// Deserializers for non-self-describing formats may not support this mode.
1152 fn deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value, Self::Error>
1153 where
1154 V: Visitor<'de>;
1155
1156 /// Determine whether `Deserialize` implementations should expect to
1157 /// deserialize their human-readable form.
1158 ///
1159 /// Some types have a human-readable form that may be somewhat expensive to
1160 /// construct, as well as a binary form that is compact and efficient.
1161 /// Generally text-based formats like JSON and YAML will prefer to use the
1162 /// human-readable one and binary formats like Postcard will prefer the
1163 /// compact one.
1164 ///
1165 /// ```edition2021
1166 /// # use std::ops::Add;
1167 /// # use std::str::FromStr;
1168 /// #
1169 /// # struct Timestamp;
1170 /// #
1171 /// # impl Timestamp {
1172 /// # const EPOCH: Timestamp = Timestamp;
1173 /// # }
1174 /// #
1175 /// # impl FromStr for Timestamp {
1176 /// # type Err = String;
1177 /// # fn from_str(_: &str) -> Result<Self, Self::Err> {
1178 /// # unimplemented!()
1179 /// # }
1180 /// # }
1181 /// #
1182 /// # struct Duration;
1183 /// #
1184 /// # impl Duration {
1185 /// # fn seconds(_: u64) -> Self { unimplemented!() }
1186 /// # }
1187 /// #
1188 /// # impl Add<Duration> for Timestamp {
1189 /// # type Output = Timestamp;
1190 /// # fn add(self, _: Duration) -> Self::Output {
1191 /// # unimplemented!()
1192 /// # }
1193 /// # }
1194 /// #
1195 /// use serde::de::{self, Deserialize, Deserializer};
1196 ///
1197 /// impl<'de> Deserialize<'de> for Timestamp {
1198 /// fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
1199 /// where
1200 /// D: Deserializer<'de>,
1201 /// {
1202 /// if deserializer.is_human_readable() {
1203 /// // Deserialize from a human-readable string like "2015-05-15T17:01:00Z".
1204 /// let s = String::deserialize(deserializer)?;
1205 /// Timestamp::from_str(&s).map_err(de::Error::custom)
1206 /// } else {
1207 /// // Deserialize from a compact binary representation, seconds since
1208 /// // the Unix epoch.
1209 /// let n = u64::deserialize(deserializer)?;
1210 /// Ok(Timestamp::EPOCH + Duration::seconds(n))
1211 /// }
1212 /// }
1213 /// }
1214 /// ```
1215 ///
1216 /// The default implementation of this method returns `true`. Data formats
1217 /// may override this to `false` to request a compact form for types that
1218 /// support one. Note that modifying this method to change a format from
1219 /// human-readable to compact or vice versa should be regarded as a breaking
1220 /// change, as a value serialized in human-readable mode is not required to
1221 /// deserialize from the same data in compact mode.
1222 #[inline]
1223 fn is_human_readable(&self) -> bool {
1224 true
1225 }
1226
1227 // Not public API.
1228 #[cfg(all(not(no_serde_derive), any(feature = "std", feature = "alloc")))]
1229 #[doc(hidden)]
1230 fn __deserialize_content<V>(
1231 self,
1232 _: crate::actually_private::T,
1233 visitor: V,
1234 ) -> Result<crate::__private::de::Content<'de>, Self::Error>
1235 where
1236 V: Visitor<'de, Value = crate::__private::de::Content<'de>>,
1237 {
1238 self.deserialize_any(visitor)
1239 }
1240}
1241
1242////////////////////////////////////////////////////////////////////////////////
1243
1244/// This trait represents a visitor that walks through a deserializer.
1245///
1246/// # Lifetime
1247///
1248/// The `'de` lifetime of this trait is the requirement for lifetime of data
1249/// that may be borrowed by `Self::Value`. See the page [Understanding
1250/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1251///
1252/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1253///
1254/// # Example
1255///
1256/// ```edition2021
1257/// # use serde::de::{self, Unexpected, Visitor};
1258/// # use std::fmt;
1259/// #
1260/// /// A visitor that deserializes a long string - a string containing at least
1261/// /// some minimum number of bytes.
1262/// struct LongString {
1263/// min: usize,
1264/// }
1265///
1266/// impl<'de> Visitor<'de> for LongString {
1267/// type Value = String;
1268///
1269/// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
1270/// write!(formatter, "a string containing at least {} bytes", self.min)
1271/// }
1272///
1273/// fn visit_str<E>(self, s: &str) -> Result<Self::Value, E>
1274/// where
1275/// E: de::Error,
1276/// {
1277/// if s.len() >= self.min {
1278/// Ok(s.to_owned())
1279/// } else {
1280/// Err(de::Error::invalid_value(Unexpected::Str(s), &self))
1281/// }
1282/// }
1283/// }
1284/// ```
1285pub trait Visitor<'de>: Sized {
1286 /// The value produced by this visitor.
1287 type Value;
1288
1289 /// Format a message stating what data this Visitor expects to receive.
1290 ///
1291 /// This is used in error messages. The message should complete the sentence
1292 /// "This Visitor expects to receive ...", for example the message could be
1293 /// "an integer between 0 and 64". The message should not be capitalized and
1294 /// should not end with a period.
1295 ///
1296 /// ```edition2021
1297 /// # use std::fmt;
1298 /// #
1299 /// # struct S {
1300 /// # max: usize,
1301 /// # }
1302 /// #
1303 /// # impl<'de> serde::de::Visitor<'de> for S {
1304 /// # type Value = ();
1305 /// #
1306 /// fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
1307 /// write!(formatter, "an integer between 0 and {}", self.max)
1308 /// }
1309 /// # }
1310 /// ```
1311 fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result;
1312
1313 /// The input contains a boolean.
1314 ///
1315 /// The default implementation fails with a type error.
1316 fn visit_bool<E>(self, v: bool) -> Result<Self::Value, E>
1317 where
1318 E: Error,
1319 {
1320 Err(Error::invalid_type(Unexpected::Bool(v), &self))
1321 }
1322
1323 /// The input contains an `i8`.
1324 ///
1325 /// The default implementation forwards to [`visit_i64`].
1326 ///
1327 /// [`visit_i64`]: #method.visit_i64
1328 fn visit_i8<E>(self, v: i8) -> Result<Self::Value, E>
1329 where
1330 E: Error,
1331 {
1332 self.visit_i64(v as i64)
1333 }
1334
1335 /// The input contains an `i16`.
1336 ///
1337 /// The default implementation forwards to [`visit_i64`].
1338 ///
1339 /// [`visit_i64`]: #method.visit_i64
1340 fn visit_i16<E>(self, v: i16) -> Result<Self::Value, E>
1341 where
1342 E: Error,
1343 {
1344 self.visit_i64(v as i64)
1345 }
1346
1347 /// The input contains an `i32`.
1348 ///
1349 /// The default implementation forwards to [`visit_i64`].
1350 ///
1351 /// [`visit_i64`]: #method.visit_i64
1352 fn visit_i32<E>(self, v: i32) -> Result<Self::Value, E>
1353 where
1354 E: Error,
1355 {
1356 self.visit_i64(v as i64)
1357 }
1358
1359 /// The input contains an `i64`.
1360 ///
1361 /// The default implementation fails with a type error.
1362 fn visit_i64<E>(self, v: i64) -> Result<Self::Value, E>
1363 where
1364 E: Error,
1365 {
1366 Err(Error::invalid_type(Unexpected::Signed(v), &self))
1367 }
1368
1369 /// The input contains a `i128`.
1370 ///
1371 /// The default implementation fails with a type error.
1372 fn visit_i128<E>(self, v: i128) -> Result<Self::Value, E>
1373 where
1374 E: Error,
1375 {
1376 let mut buf = [0u8; 58];
1377 let mut writer = format::Buf::new(&mut buf);
1378 fmt::Write::write_fmt(&mut writer, format_args!("integer `{}` as i128", v)).unwrap();
1379 Err(Error::invalid_type(
1380 Unexpected::Other(writer.as_str()),
1381 &self,
1382 ))
1383 }
1384
1385 /// The input contains a `u8`.
1386 ///
1387 /// The default implementation forwards to [`visit_u64`].
1388 ///
1389 /// [`visit_u64`]: #method.visit_u64
1390 fn visit_u8<E>(self, v: u8) -> Result<Self::Value, E>
1391 where
1392 E: Error,
1393 {
1394 self.visit_u64(v as u64)
1395 }
1396
1397 /// The input contains a `u16`.
1398 ///
1399 /// The default implementation forwards to [`visit_u64`].
1400 ///
1401 /// [`visit_u64`]: #method.visit_u64
1402 fn visit_u16<E>(self, v: u16) -> Result<Self::Value, E>
1403 where
1404 E: Error,
1405 {
1406 self.visit_u64(v as u64)
1407 }
1408
1409 /// The input contains a `u32`.
1410 ///
1411 /// The default implementation forwards to [`visit_u64`].
1412 ///
1413 /// [`visit_u64`]: #method.visit_u64
1414 fn visit_u32<E>(self, v: u32) -> Result<Self::Value, E>
1415 where
1416 E: Error,
1417 {
1418 self.visit_u64(v as u64)
1419 }
1420
1421 /// The input contains a `u64`.
1422 ///
1423 /// The default implementation fails with a type error.
1424 fn visit_u64<E>(self, v: u64) -> Result<Self::Value, E>
1425 where
1426 E: Error,
1427 {
1428 Err(Error::invalid_type(Unexpected::Unsigned(v), &self))
1429 }
1430
1431 /// The input contains a `u128`.
1432 ///
1433 /// The default implementation fails with a type error.
1434 fn visit_u128<E>(self, v: u128) -> Result<Self::Value, E>
1435 where
1436 E: Error,
1437 {
1438 let mut buf = [0u8; 57];
1439 let mut writer = format::Buf::new(&mut buf);
1440 fmt::Write::write_fmt(&mut writer, format_args!("integer `{}` as u128", v)).unwrap();
1441 Err(Error::invalid_type(
1442 Unexpected::Other(writer.as_str()),
1443 &self,
1444 ))
1445 }
1446
1447 /// The input contains an `f32`.
1448 ///
1449 /// The default implementation forwards to [`visit_f64`].
1450 ///
1451 /// [`visit_f64`]: #method.visit_f64
1452 fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
1453 where
1454 E: Error,
1455 {
1456 self.visit_f64(v as f64)
1457 }
1458
1459 /// The input contains an `f64`.
1460 ///
1461 /// The default implementation fails with a type error.
1462 fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
1463 where
1464 E: Error,
1465 {
1466 Err(Error::invalid_type(Unexpected::Float(v), &self))
1467 }
1468
1469 /// The input contains a `char`.
1470 ///
1471 /// The default implementation forwards to [`visit_str`] as a one-character
1472 /// string.
1473 ///
1474 /// [`visit_str`]: #method.visit_str
1475 #[inline]
1476 fn visit_char<E>(self, v: char) -> Result<Self::Value, E>
1477 where
1478 E: Error,
1479 {
1480 self.visit_str(v.encode_utf8(&mut [0u8; 4]))
1481 }
1482
1483 /// The input contains a string. The lifetime of the string is ephemeral and
1484 /// it may be destroyed after this method returns.
1485 ///
1486 /// This method allows the `Deserializer` to avoid a copy by retaining
1487 /// ownership of any buffered data. `Deserialize` implementations that do
1488 /// not benefit from taking ownership of `String` data should indicate that
1489 /// to the deserializer by using `Deserializer::deserialize_str` rather than
1490 /// `Deserializer::deserialize_string`.
1491 ///
1492 /// It is never correct to implement `visit_string` without implementing
1493 /// `visit_str`. Implement neither, both, or just `visit_str`.
1494 fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
1495 where
1496 E: Error,
1497 {
1498 Err(Error::invalid_type(Unexpected::Str(v), &self))
1499 }
1500
1501 /// The input contains a string that lives at least as long as the
1502 /// `Deserializer`.
1503 ///
1504 /// This enables zero-copy deserialization of strings in some formats. For
1505 /// example JSON input containing the JSON string `"borrowed"` can be
1506 /// deserialized with zero copying into a `&'a str` as long as the input
1507 /// data outlives `'a`.
1508 ///
1509 /// The default implementation forwards to `visit_str`.
1510 #[inline]
1511 fn visit_borrowed_str<E>(self, v: &'de str) -> Result<Self::Value, E>
1512 where
1513 E: Error,
1514 {
1515 self.visit_str(v)
1516 }
1517
1518 /// The input contains a string and ownership of the string is being given
1519 /// to the `Visitor`.
1520 ///
1521 /// This method allows the `Visitor` to avoid a copy by taking ownership of
1522 /// a string created by the `Deserializer`. `Deserialize` implementations
1523 /// that benefit from taking ownership of `String` data should indicate that
1524 /// to the deserializer by using `Deserializer::deserialize_string` rather
1525 /// than `Deserializer::deserialize_str`, although not every deserializer
1526 /// will honor such a request.
1527 ///
1528 /// It is never correct to implement `visit_string` without implementing
1529 /// `visit_str`. Implement neither, both, or just `visit_str`.
1530 ///
1531 /// The default implementation forwards to `visit_str` and then drops the
1532 /// `String`.
1533 #[inline]
1534 #[cfg(any(feature = "std", feature = "alloc"))]
1535 #[cfg_attr(docsrs, doc(cfg(any(feature = "std", feature = "alloc"))))]
1536 fn visit_string<E>(self, v: String) -> Result<Self::Value, E>
1537 where
1538 E: Error,
1539 {
1540 self.visit_str(&v)
1541 }
1542
1543 /// The input contains a byte array. The lifetime of the byte array is
1544 /// ephemeral and it may be destroyed after this method returns.
1545 ///
1546 /// This method allows the `Deserializer` to avoid a copy by retaining
1547 /// ownership of any buffered data. `Deserialize` implementations that do
1548 /// not benefit from taking ownership of `Vec<u8>` data should indicate that
1549 /// to the deserializer by using `Deserializer::deserialize_bytes` rather
1550 /// than `Deserializer::deserialize_byte_buf`.
1551 ///
1552 /// It is never correct to implement `visit_byte_buf` without implementing
1553 /// `visit_bytes`. Implement neither, both, or just `visit_bytes`.
1554 fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
1555 where
1556 E: Error,
1557 {
1558 Err(Error::invalid_type(Unexpected::Bytes(v), &self))
1559 }
1560
1561 /// The input contains a byte array that lives at least as long as the
1562 /// `Deserializer`.
1563 ///
1564 /// This enables zero-copy deserialization of bytes in some formats. For
1565 /// example Postcard data containing bytes can be deserialized with zero
1566 /// copying into a `&'a [u8]` as long as the input data outlives `'a`.
1567 ///
1568 /// The default implementation forwards to `visit_bytes`.
1569 #[inline]
1570 fn visit_borrowed_bytes<E>(self, v: &'de [u8]) -> Result<Self::Value, E>
1571 where
1572 E: Error,
1573 {
1574 self.visit_bytes(v)
1575 }
1576
1577 /// The input contains a byte array and ownership of the byte array is being
1578 /// given to the `Visitor`.
1579 ///
1580 /// This method allows the `Visitor` to avoid a copy by taking ownership of
1581 /// a byte buffer created by the `Deserializer`. `Deserialize`
1582 /// implementations that benefit from taking ownership of `Vec<u8>` data
1583 /// should indicate that to the deserializer by using
1584 /// `Deserializer::deserialize_byte_buf` rather than
1585 /// `Deserializer::deserialize_bytes`, although not every deserializer will
1586 /// honor such a request.
1587 ///
1588 /// It is never correct to implement `visit_byte_buf` without implementing
1589 /// `visit_bytes`. Implement neither, both, or just `visit_bytes`.
1590 ///
1591 /// The default implementation forwards to `visit_bytes` and then drops the
1592 /// `Vec<u8>`.
1593 #[cfg(any(feature = "std", feature = "alloc"))]
1594 #[cfg_attr(docsrs, doc(cfg(any(feature = "std", feature = "alloc"))))]
1595 fn visit_byte_buf<E>(self, v: Vec<u8>) -> Result<Self::Value, E>
1596 where
1597 E: Error,
1598 {
1599 self.visit_bytes(&v)
1600 }
1601
1602 /// The input contains an optional that is absent.
1603 ///
1604 /// The default implementation fails with a type error.
1605 fn visit_none<E>(self) -> Result<Self::Value, E>
1606 where
1607 E: Error,
1608 {
1609 Err(Error::invalid_type(Unexpected::Option, &self))
1610 }
1611
1612 /// The input contains an optional that is present.
1613 ///
1614 /// The default implementation fails with a type error.
1615 fn visit_some<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1616 where
1617 D: Deserializer<'de>,
1618 {
1619 let _ = deserializer;
1620 Err(Error::invalid_type(Unexpected::Option, &self))
1621 }
1622
1623 /// The input contains a unit `()`.
1624 ///
1625 /// The default implementation fails with a type error.
1626 fn visit_unit<E>(self) -> Result<Self::Value, E>
1627 where
1628 E: Error,
1629 {
1630 Err(Error::invalid_type(Unexpected::Unit, &self))
1631 }
1632
1633 /// The input contains a newtype struct.
1634 ///
1635 /// The content of the newtype struct may be read from the given
1636 /// `Deserializer`.
1637 ///
1638 /// The default implementation fails with a type error.
1639 fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
1640 where
1641 D: Deserializer<'de>,
1642 {
1643 let _ = deserializer;
1644 Err(Error::invalid_type(Unexpected::NewtypeStruct, &self))
1645 }
1646
1647 /// The input contains a sequence of elements.
1648 ///
1649 /// The default implementation fails with a type error.
1650 fn visit_seq<A>(self, seq: A) -> Result<Self::Value, A::Error>
1651 where
1652 A: SeqAccess<'de>,
1653 {
1654 let _ = seq;
1655 Err(Error::invalid_type(Unexpected::Seq, &self))
1656 }
1657
1658 /// The input contains a key-value map.
1659 ///
1660 /// The default implementation fails with a type error.
1661 fn visit_map<A>(self, map: A) -> Result<Self::Value, A::Error>
1662 where
1663 A: MapAccess<'de>,
1664 {
1665 let _ = map;
1666 Err(Error::invalid_type(Unexpected::Map, &self))
1667 }
1668
1669 /// The input contains an enum.
1670 ///
1671 /// The default implementation fails with a type error.
1672 fn visit_enum<A>(self, data: A) -> Result<Self::Value, A::Error>
1673 where
1674 A: EnumAccess<'de>,
1675 {
1676 let _ = data;
1677 Err(Error::invalid_type(Unexpected::Enum, &self))
1678 }
1679
1680 // Used when deserializing a flattened Option field. Not public API.
1681 #[doc(hidden)]
1682 fn __private_visit_untagged_option<D>(self, _: D) -> Result<Self::Value, ()>
1683 where
1684 D: Deserializer<'de>,
1685 {
1686 Err(())
1687 }
1688}
1689
1690////////////////////////////////////////////////////////////////////////////////
1691
1692/// Provides a `Visitor` access to each element of a sequence in the input.
1693///
1694/// This is a trait that a `Deserializer` passes to a `Visitor` implementation,
1695/// which deserializes each item in a sequence.
1696///
1697/// # Lifetime
1698///
1699/// The `'de` lifetime of this trait is the lifetime of data that may be
1700/// borrowed by deserialized sequence elements. See the page [Understanding
1701/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1702///
1703/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1704///
1705/// # Example implementation
1706///
1707/// The [example data format] presented on the website demonstrates an
1708/// implementation of `SeqAccess` for a basic JSON data format.
1709///
1710/// [example data format]: https://serde.rs/data-format.html
1711pub trait SeqAccess<'de> {
1712 /// The error type that can be returned if some error occurs during
1713 /// deserialization.
1714 type Error: Error;
1715
1716 /// This returns `Ok(Some(value))` for the next value in the sequence, or
1717 /// `Ok(None)` if there are no more remaining items.
1718 ///
1719 /// `Deserialize` implementations should typically use
1720 /// `SeqAccess::next_element` instead.
1721 fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
1722 where
1723 T: DeserializeSeed<'de>;
1724
1725 /// This returns `Ok(Some(value))` for the next value in the sequence, or
1726 /// `Ok(None)` if there are no more remaining items.
1727 ///
1728 /// This method exists as a convenience for `Deserialize` implementations.
1729 /// `SeqAccess` implementations should not override the default behavior.
1730 #[inline]
1731 fn next_element<T>(&mut self) -> Result<Option<T>, Self::Error>
1732 where
1733 T: Deserialize<'de>,
1734 {
1735 self.next_element_seed(PhantomData)
1736 }
1737
1738 /// Returns the number of elements remaining in the sequence, if known.
1739 #[inline]
1740 fn size_hint(&self) -> Option<usize> {
1741 None
1742 }
1743}
1744
1745impl<'de, 'a, A> SeqAccess<'de> for &'a mut A
1746where
1747 A: ?Sized + SeqAccess<'de>,
1748{
1749 type Error = A::Error;
1750
1751 #[inline]
1752 fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>, Self::Error>
1753 where
1754 T: DeserializeSeed<'de>,
1755 {
1756 (**self).next_element_seed(seed)
1757 }
1758
1759 #[inline]
1760 fn next_element<T>(&mut self) -> Result<Option<T>, Self::Error>
1761 where
1762 T: Deserialize<'de>,
1763 {
1764 (**self).next_element()
1765 }
1766
1767 #[inline]
1768 fn size_hint(&self) -> Option<usize> {
1769 (**self).size_hint()
1770 }
1771}
1772
1773////////////////////////////////////////////////////////////////////////////////
1774
1775/// Provides a `Visitor` access to each entry of a map in the input.
1776///
1777/// This is a trait that a `Deserializer` passes to a `Visitor` implementation.
1778///
1779/// # Lifetime
1780///
1781/// The `'de` lifetime of this trait is the lifetime of data that may be
1782/// borrowed by deserialized map entries. See the page [Understanding
1783/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1784///
1785/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1786///
1787/// # Example implementation
1788///
1789/// The [example data format] presented on the website demonstrates an
1790/// implementation of `MapAccess` for a basic JSON data format.
1791///
1792/// [example data format]: https://serde.rs/data-format.html
1793pub trait MapAccess<'de> {
1794 /// The error type that can be returned if some error occurs during
1795 /// deserialization.
1796 type Error: Error;
1797
1798 /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)`
1799 /// if there are no more remaining entries.
1800 ///
1801 /// `Deserialize` implementations should typically use
1802 /// `MapAccess::next_key` or `MapAccess::next_entry` instead.
1803 fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
1804 where
1805 K: DeserializeSeed<'de>;
1806
1807 /// This returns a `Ok(value)` for the next value in the map.
1808 ///
1809 /// `Deserialize` implementations should typically use
1810 /// `MapAccess::next_value` instead.
1811 ///
1812 /// # Panics
1813 ///
1814 /// Calling `next_value_seed` before `next_key_seed` is incorrect and is
1815 /// allowed to panic or return bogus results.
1816 fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
1817 where
1818 V: DeserializeSeed<'de>;
1819
1820 /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in
1821 /// the map, or `Ok(None)` if there are no more remaining items.
1822 ///
1823 /// `MapAccess` implementations should override the default behavior if a
1824 /// more efficient implementation is possible.
1825 ///
1826 /// `Deserialize` implementations should typically use
1827 /// `MapAccess::next_entry` instead.
1828 #[inline]
1829 fn next_entry_seed<K, V>(
1830 &mut self,
1831 kseed: K,
1832 vseed: V,
1833 ) -> Result<Option<(K::Value, V::Value)>, Self::Error>
1834 where
1835 K: DeserializeSeed<'de>,
1836 V: DeserializeSeed<'de>,
1837 {
1838 match tri!(self.next_key_seed(kseed)) {
1839 Some(key) => {
1840 let value = tri!(self.next_value_seed(vseed));
1841 Ok(Some((key, value)))
1842 }
1843 None => Ok(None),
1844 }
1845 }
1846
1847 /// This returns `Ok(Some(key))` for the next key in the map, or `Ok(None)`
1848 /// if there are no more remaining entries.
1849 ///
1850 /// This method exists as a convenience for `Deserialize` implementations.
1851 /// `MapAccess` implementations should not override the default behavior.
1852 #[inline]
1853 fn next_key<K>(&mut self) -> Result<Option<K>, Self::Error>
1854 where
1855 K: Deserialize<'de>,
1856 {
1857 self.next_key_seed(PhantomData)
1858 }
1859
1860 /// This returns a `Ok(value)` for the next value in the map.
1861 ///
1862 /// This method exists as a convenience for `Deserialize` implementations.
1863 /// `MapAccess` implementations should not override the default behavior.
1864 ///
1865 /// # Panics
1866 ///
1867 /// Calling `next_value` before `next_key` is incorrect and is allowed to
1868 /// panic or return bogus results.
1869 #[inline]
1870 fn next_value<V>(&mut self) -> Result<V, Self::Error>
1871 where
1872 V: Deserialize<'de>,
1873 {
1874 self.next_value_seed(PhantomData)
1875 }
1876
1877 /// This returns `Ok(Some((key, value)))` for the next (key-value) pair in
1878 /// the map, or `Ok(None)` if there are no more remaining items.
1879 ///
1880 /// This method exists as a convenience for `Deserialize` implementations.
1881 /// `MapAccess` implementations should not override the default behavior.
1882 #[inline]
1883 fn next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error>
1884 where
1885 K: Deserialize<'de>,
1886 V: Deserialize<'de>,
1887 {
1888 self.next_entry_seed(PhantomData, PhantomData)
1889 }
1890
1891 /// Returns the number of entries remaining in the map, if known.
1892 #[inline]
1893 fn size_hint(&self) -> Option<usize> {
1894 None
1895 }
1896}
1897
1898impl<'de, 'a, A> MapAccess<'de> for &'a mut A
1899where
1900 A: ?Sized + MapAccess<'de>,
1901{
1902 type Error = A::Error;
1903
1904 #[inline]
1905 fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>, Self::Error>
1906 where
1907 K: DeserializeSeed<'de>,
1908 {
1909 (**self).next_key_seed(seed)
1910 }
1911
1912 #[inline]
1913 fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value, Self::Error>
1914 where
1915 V: DeserializeSeed<'de>,
1916 {
1917 (**self).next_value_seed(seed)
1918 }
1919
1920 #[inline]
1921 fn next_entry_seed<K, V>(
1922 &mut self,
1923 kseed: K,
1924 vseed: V,
1925 ) -> Result<Option<(K::Value, V::Value)>, Self::Error>
1926 where
1927 K: DeserializeSeed<'de>,
1928 V: DeserializeSeed<'de>,
1929 {
1930 (**self).next_entry_seed(kseed, vseed)
1931 }
1932
1933 #[inline]
1934 fn next_entry<K, V>(&mut self) -> Result<Option<(K, V)>, Self::Error>
1935 where
1936 K: Deserialize<'de>,
1937 V: Deserialize<'de>,
1938 {
1939 (**self).next_entry()
1940 }
1941
1942 #[inline]
1943 fn next_key<K>(&mut self) -> Result<Option<K>, Self::Error>
1944 where
1945 K: Deserialize<'de>,
1946 {
1947 (**self).next_key()
1948 }
1949
1950 #[inline]
1951 fn next_value<V>(&mut self) -> Result<V, Self::Error>
1952 where
1953 V: Deserialize<'de>,
1954 {
1955 (**self).next_value()
1956 }
1957
1958 #[inline]
1959 fn size_hint(&self) -> Option<usize> {
1960 (**self).size_hint()
1961 }
1962}
1963
1964////////////////////////////////////////////////////////////////////////////////
1965
1966/// Provides a `Visitor` access to the data of an enum in the input.
1967///
1968/// `EnumAccess` is created by the `Deserializer` and passed to the
1969/// `Visitor` in order to identify which variant of an enum to deserialize.
1970///
1971/// # Lifetime
1972///
1973/// The `'de` lifetime of this trait is the lifetime of data that may be
1974/// borrowed by the deserialized enum variant. See the page [Understanding
1975/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
1976///
1977/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
1978///
1979/// # Example implementation
1980///
1981/// The [example data format] presented on the website demonstrates an
1982/// implementation of `EnumAccess` for a basic JSON data format.
1983///
1984/// [example data format]: https://serde.rs/data-format.html
1985pub trait EnumAccess<'de>: Sized {
1986 /// The error type that can be returned if some error occurs during
1987 /// deserialization.
1988 type Error: Error;
1989 /// The `Visitor` that will be used to deserialize the content of the enum
1990 /// variant.
1991 type Variant: VariantAccess<'de, Error = Self::Error>;
1992
1993 /// `variant` is called to identify which variant to deserialize.
1994 ///
1995 /// `Deserialize` implementations should typically use `EnumAccess::variant`
1996 /// instead.
1997 fn variant_seed<V>(self, seed: V) -> Result<(V::Value, Self::Variant), Self::Error>
1998 where
1999 V: DeserializeSeed<'de>;
2000
2001 /// `variant` is called to identify which variant to deserialize.
2002 ///
2003 /// This method exists as a convenience for `Deserialize` implementations.
2004 /// `EnumAccess` implementations should not override the default behavior.
2005 #[inline]
2006 fn variant<V>(self) -> Result<(V, Self::Variant), Self::Error>
2007 where
2008 V: Deserialize<'de>,
2009 {
2010 self.variant_seed(PhantomData)
2011 }
2012}
2013
2014/// `VariantAccess` is a visitor that is created by the `Deserializer` and
2015/// passed to the `Deserialize` to deserialize the content of a particular enum
2016/// variant.
2017///
2018/// # Lifetime
2019///
2020/// The `'de` lifetime of this trait is the lifetime of data that may be
2021/// borrowed by the deserialized enum variant. See the page [Understanding
2022/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
2023///
2024/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
2025///
2026/// # Example implementation
2027///
2028/// The [example data format] presented on the website demonstrates an
2029/// implementation of `VariantAccess` for a basic JSON data format.
2030///
2031/// [example data format]: https://serde.rs/data-format.html
2032pub trait VariantAccess<'de>: Sized {
2033 /// The error type that can be returned if some error occurs during
2034 /// deserialization. Must match the error type of our `EnumAccess`.
2035 type Error: Error;
2036
2037 /// Called when deserializing a variant with no values.
2038 ///
2039 /// If the data contains a different type of variant, the following
2040 /// `invalid_type` error should be constructed:
2041 ///
2042 /// ```edition2021
2043 /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2044 /// #
2045 /// # struct X;
2046 /// #
2047 /// # impl<'de> VariantAccess<'de> for X {
2048 /// # type Error = value::Error;
2049 /// #
2050 /// fn unit_variant(self) -> Result<(), Self::Error> {
2051 /// // What the data actually contained; suppose it is a tuple variant.
2052 /// let unexp = Unexpected::TupleVariant;
2053 /// Err(de::Error::invalid_type(unexp, &"unit variant"))
2054 /// }
2055 /// #
2056 /// # fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2057 /// # where
2058 /// # T: DeserializeSeed<'de>,
2059 /// # { unimplemented!() }
2060 /// #
2061 /// # fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2062 /// # where
2063 /// # V: Visitor<'de>,
2064 /// # { unimplemented!() }
2065 /// #
2066 /// # fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2067 /// # where
2068 /// # V: Visitor<'de>,
2069 /// # { unimplemented!() }
2070 /// # }
2071 /// ```
2072 fn unit_variant(self) -> Result<(), Self::Error>;
2073
2074 /// Called when deserializing a variant with a single value.
2075 ///
2076 /// `Deserialize` implementations should typically use
2077 /// `VariantAccess::newtype_variant` instead.
2078 ///
2079 /// If the data contains a different type of variant, the following
2080 /// `invalid_type` error should be constructed:
2081 ///
2082 /// ```edition2021
2083 /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2084 /// #
2085 /// # struct X;
2086 /// #
2087 /// # impl<'de> VariantAccess<'de> for X {
2088 /// # type Error = value::Error;
2089 /// #
2090 /// # fn unit_variant(self) -> Result<(), Self::Error> {
2091 /// # unimplemented!()
2092 /// # }
2093 /// #
2094 /// fn newtype_variant_seed<T>(self, _seed: T) -> Result<T::Value, Self::Error>
2095 /// where
2096 /// T: DeserializeSeed<'de>,
2097 /// {
2098 /// // What the data actually contained; suppose it is a unit variant.
2099 /// let unexp = Unexpected::UnitVariant;
2100 /// Err(de::Error::invalid_type(unexp, &"newtype variant"))
2101 /// }
2102 /// #
2103 /// # fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2104 /// # where
2105 /// # V: Visitor<'de>,
2106 /// # { unimplemented!() }
2107 /// #
2108 /// # fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2109 /// # where
2110 /// # V: Visitor<'de>,
2111 /// # { unimplemented!() }
2112 /// # }
2113 /// ```
2114 fn newtype_variant_seed<T>(self, seed: T) -> Result<T::Value, Self::Error>
2115 where
2116 T: DeserializeSeed<'de>;
2117
2118 /// Called when deserializing a variant with a single value.
2119 ///
2120 /// This method exists as a convenience for `Deserialize` implementations.
2121 /// `VariantAccess` implementations should not override the default
2122 /// behavior.
2123 #[inline]
2124 fn newtype_variant<T>(self) -> Result<T, Self::Error>
2125 where
2126 T: Deserialize<'de>,
2127 {
2128 self.newtype_variant_seed(PhantomData)
2129 }
2130
2131 /// Called when deserializing a tuple-like variant.
2132 ///
2133 /// The `len` is the number of fields expected in the tuple variant.
2134 ///
2135 /// If the data contains a different type of variant, the following
2136 /// `invalid_type` error should be constructed:
2137 ///
2138 /// ```edition2021
2139 /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2140 /// #
2141 /// # struct X;
2142 /// #
2143 /// # impl<'de> VariantAccess<'de> for X {
2144 /// # type Error = value::Error;
2145 /// #
2146 /// # fn unit_variant(self) -> Result<(), Self::Error> {
2147 /// # unimplemented!()
2148 /// # }
2149 /// #
2150 /// # fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2151 /// # where
2152 /// # T: DeserializeSeed<'de>,
2153 /// # { unimplemented!() }
2154 /// #
2155 /// fn tuple_variant<V>(self, _len: usize, _visitor: V) -> Result<V::Value, Self::Error>
2156 /// where
2157 /// V: Visitor<'de>,
2158 /// {
2159 /// // What the data actually contained; suppose it is a unit variant.
2160 /// let unexp = Unexpected::UnitVariant;
2161 /// Err(de::Error::invalid_type(unexp, &"tuple variant"))
2162 /// }
2163 /// #
2164 /// # fn struct_variant<V>(self, _: &[&str], _: V) -> Result<V::Value, Self::Error>
2165 /// # where
2166 /// # V: Visitor<'de>,
2167 /// # { unimplemented!() }
2168 /// # }
2169 /// ```
2170 fn tuple_variant<V>(self, len: usize, visitor: V) -> Result<V::Value, Self::Error>
2171 where
2172 V: Visitor<'de>;
2173
2174 /// Called when deserializing a struct-like variant.
2175 ///
2176 /// The `fields` are the names of the fields of the struct variant.
2177 ///
2178 /// If the data contains a different type of variant, the following
2179 /// `invalid_type` error should be constructed:
2180 ///
2181 /// ```edition2021
2182 /// # use serde::de::{self, value, DeserializeSeed, Visitor, VariantAccess, Unexpected};
2183 /// #
2184 /// # struct X;
2185 /// #
2186 /// # impl<'de> VariantAccess<'de> for X {
2187 /// # type Error = value::Error;
2188 /// #
2189 /// # fn unit_variant(self) -> Result<(), Self::Error> {
2190 /// # unimplemented!()
2191 /// # }
2192 /// #
2193 /// # fn newtype_variant_seed<T>(self, _: T) -> Result<T::Value, Self::Error>
2194 /// # where
2195 /// # T: DeserializeSeed<'de>,
2196 /// # { unimplemented!() }
2197 /// #
2198 /// # fn tuple_variant<V>(self, _: usize, _: V) -> Result<V::Value, Self::Error>
2199 /// # where
2200 /// # V: Visitor<'de>,
2201 /// # { unimplemented!() }
2202 /// #
2203 /// fn struct_variant<V>(
2204 /// self,
2205 /// _fields: &'static [&'static str],
2206 /// _visitor: V,
2207 /// ) -> Result<V::Value, Self::Error>
2208 /// where
2209 /// V: Visitor<'de>,
2210 /// {
2211 /// // What the data actually contained; suppose it is a unit variant.
2212 /// let unexp = Unexpected::UnitVariant;
2213 /// Err(de::Error::invalid_type(unexp, &"struct variant"))
2214 /// }
2215 /// # }
2216 /// ```
2217 fn struct_variant<V>(
2218 self,
2219 fields: &'static [&'static str],
2220 visitor: V,
2221 ) -> Result<V::Value, Self::Error>
2222 where
2223 V: Visitor<'de>;
2224}
2225
2226////////////////////////////////////////////////////////////////////////////////
2227
2228/// Converts an existing value into a `Deserializer` from which other values can
2229/// be deserialized.
2230///
2231/// # Lifetime
2232///
2233/// The `'de` lifetime of this trait is the lifetime of data that may be
2234/// borrowed from the resulting `Deserializer`. See the page [Understanding
2235/// deserializer lifetimes] for a more detailed explanation of these lifetimes.
2236///
2237/// [Understanding deserializer lifetimes]: https://serde.rs/lifetimes.html
2238///
2239/// # Example
2240///
2241/// ```edition2021
2242/// use serde::de::{value, Deserialize, IntoDeserializer};
2243/// use serde_derive::Deserialize;
2244/// use std::str::FromStr;
2245///
2246/// #[derive(Deserialize)]
2247/// enum Setting {
2248/// On,
2249/// Off,
2250/// }
2251///
2252/// impl FromStr for Setting {
2253/// type Err = value::Error;
2254///
2255/// fn from_str(s: &str) -> Result<Self, Self::Err> {
2256/// Self::deserialize(s.into_deserializer())
2257/// }
2258/// }
2259/// ```
2260pub trait IntoDeserializer<'de, E: Error = value::Error> {
2261 /// The type of the deserializer being converted into.
2262 type Deserializer: Deserializer<'de, Error = E>;
2263
2264 /// Convert this value into a deserializer.
2265 fn into_deserializer(self) -> Self::Deserializer;
2266}
2267
2268////////////////////////////////////////////////////////////////////////////////
2269
2270/// Used in error messages.
2271///
2272/// - expected `a`
2273/// - expected `a` or `b`
2274/// - expected one of `a`, `b`, `c`
2275///
2276/// The slice of names must not be empty.
2277struct OneOf {
2278 names: &'static [&'static str],
2279}
2280
2281impl Display for OneOf {
2282 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
2283 match self.names.len() {
2284 0 => panic!(), // special case elsewhere
2285 1 => write!(formatter, "`{}`", self.names[0]),
2286 2 => write!(formatter, "`{}` or `{}`", self.names[0], self.names[1]),
2287 _ => {
2288 tri!(formatter.write_str("one of "));
2289 for (i, alt) in self.names.iter().enumerate() {
2290 if i > 0 {
2291 tri!(formatter.write_str(", "));
2292 }
2293 tri!(write!(formatter, "`{}`", alt));
2294 }
2295 Ok(())
2296 }
2297 }
2298 }
2299}
2300
2301struct WithDecimalPoint(f64);
2302
2303impl Display for WithDecimalPoint {
2304 fn fmt(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
2305 struct LookForDecimalPoint<'f, 'a> {
2306 formatter: &'f mut fmt::Formatter<'a>,
2307 has_decimal_point: bool,
2308 }
2309
2310 impl<'f, 'a> fmt::Write for LookForDecimalPoint<'f, 'a> {
2311 fn write_str(&mut self, fragment: &str) -> fmt::Result {
2312 self.has_decimal_point |= fragment.contains('.');
2313 self.formatter.write_str(fragment)
2314 }
2315
2316 fn write_char(&mut self, ch: char) -> fmt::Result {
2317 self.has_decimal_point |= ch == '.';
2318 self.formatter.write_char(ch)
2319 }
2320 }
2321
2322 if self.0.is_finite() {
2323 let mut writer = LookForDecimalPoint {
2324 formatter,
2325 has_decimal_point: false,
2326 };
2327 tri!(write!(writer, "{}", self.0));
2328 if !writer.has_decimal_point {
2329 tri!(formatter.write_str(".0"));
2330 }
2331 } else {
2332 tri!(write!(formatter, "{}", self.0));
2333 }
2334 Ok(())
2335 }
2336}