packet/
serialize.rs

1// Copyright 2018 The Fuchsia Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5//! Serialization.
6
7use std::cmp;
8use std::convert::Infallible as Never;
9use std::fmt::{self, Debug, Formatter};
10use std::ops::{Range, RangeBounds};
11
12use arrayvec::ArrayVec;
13use zerocopy::SplitByteSlice;
14
15use crate::{
16    canonicalize_range, take_back, take_back_mut, take_front, take_front_mut,
17    AsFragmentedByteSlice, Buffer, BufferView, BufferViewMut, ContiguousBuffer, EmptyBuf,
18    FragmentedBuffer, FragmentedBufferMut, FragmentedBytes, FragmentedBytesMut, GrowBuffer,
19    GrowBufferMut, ParsablePacket, ParseBuffer, ParseBufferMut, ReusableBuffer, ShrinkBuffer,
20};
21
22/// Either of two buffers.
23///
24/// An `Either` wraps one of two different buffer types. It implements all of
25/// the relevant traits by calling the corresponding methods on the wrapped
26/// buffer.
27#[derive(Copy, Clone, Debug)]
28pub enum Either<A, B> {
29    A(A),
30    B(B),
31}
32
33impl<A, B> Either<A, B> {
34    /// Maps the `A` variant of an `Either`.
35    ///
36    /// Given an `Either<A, B>` and a function from `A` to `AA`, `map_a`
37    /// produces an `Either<AA, B>` by applying the function to the `A` variant
38    /// or passing on the `B` variant unmodified.
39    pub fn map_a<AA, F: FnOnce(A) -> AA>(self, f: F) -> Either<AA, B> {
40        match self {
41            Either::A(a) => Either::A(f(a)),
42            Either::B(b) => Either::B(b),
43        }
44    }
45
46    /// Maps the `B` variant of an `Either`.
47    ///
48    /// Given an `Either<A, B>` and a function from `B` to `BB`, `map_b`
49    /// produces an `Either<A, BB>` by applying the function to the `B` variant
50    /// or passing on the `A` variant unmodified.
51    pub fn map_b<BB, F: FnOnce(B) -> BB>(self, f: F) -> Either<A, BB> {
52        match self {
53            Either::A(a) => Either::A(a),
54            Either::B(b) => Either::B(f(b)),
55        }
56    }
57
58    /// Returns the `A` variant in an `Either<A, B>`.
59    ///
60    /// # Panics
61    ///
62    /// Panics if this `Either<A, B>` does not hold the `A` variant.
63    pub fn unwrap_a(self) -> A {
64        match self {
65            Either::A(x) => x,
66            Either::B(_) => panic!("This `Either<A, B>` does not hold the `A` variant"),
67        }
68    }
69
70    /// Returns the `B` variant in an `Either<A, B>`.
71    ///
72    /// # Panics
73    ///
74    /// Panics if this `Either<A, B>` does not hold the `B` variant.
75    pub fn unwrap_b(self) -> B {
76        match self {
77            Either::A(_) => panic!("This `Either<A, B>` does not hold the `B` variant"),
78            Either::B(x) => x,
79        }
80    }
81}
82
83impl<A> Either<A, A> {
84    /// Returns the inner value held by this `Either` when both possible values
85    /// `Either::A` and `Either::B` contain the same inner types.
86    pub fn into_inner(self) -> A {
87        match self {
88            Either::A(x) => x,
89            Either::B(x) => x,
90        }
91    }
92}
93
94impl<A> Either<A, Never> {
95    /// Returns the `A` value in an `Either<A, Never>`.
96    #[inline]
97    pub fn into_a(self) -> A {
98        match self {
99            Either::A(a) => a,
100        }
101    }
102}
103
104impl<B> Either<Never, B> {
105    /// Returns the `B` value in an `Either<Never, B>`.
106    #[inline]
107    pub fn into_b(self) -> B {
108        match self {
109            Either::B(b) => b,
110        }
111    }
112}
113
114macro_rules! call_method_on_either {
115    ($val:expr, $method:ident, $($args:expr),*) => {
116        match $val {
117            Either::A(a) => a.$method($($args),*),
118            Either::B(b) => b.$method($($args),*),
119        }
120    };
121    ($val:expr, $method:ident) => {
122        call_method_on_either!($val, $method,)
123    };
124}
125
126// NOTE(joshlf): We override the default implementations of all methods for
127// Either. Many of the default implementations make multiple calls to other
128// Buffer methods, each of which performs a match statement to figure out which
129// Either variant is present. We assume that doing this match once is more
130// performant than doing it multiple times.
131
132impl<A, B> FragmentedBuffer for Either<A, B>
133where
134    A: FragmentedBuffer,
135    B: FragmentedBuffer,
136{
137    fn len(&self) -> usize {
138        call_method_on_either!(self, len)
139    }
140
141    fn with_bytes<R, F>(&self, f: F) -> R
142    where
143        F: for<'a, 'b> FnOnce(FragmentedBytes<'a, 'b>) -> R,
144    {
145        call_method_on_either!(self, with_bytes, f)
146    }
147}
148
149impl<A, B> ContiguousBuffer for Either<A, B>
150where
151    A: ContiguousBuffer,
152    B: ContiguousBuffer,
153{
154}
155
156impl<A, B> ShrinkBuffer for Either<A, B>
157where
158    A: ShrinkBuffer,
159    B: ShrinkBuffer,
160{
161    fn shrink<R: RangeBounds<usize>>(&mut self, range: R) {
162        call_method_on_either!(self, shrink, range)
163    }
164    fn shrink_front(&mut self, n: usize) {
165        call_method_on_either!(self, shrink_front, n)
166    }
167    fn shrink_back(&mut self, n: usize) {
168        call_method_on_either!(self, shrink_back, n)
169    }
170}
171
172impl<A, B> ParseBuffer for Either<A, B>
173where
174    A: ParseBuffer,
175    B: ParseBuffer,
176{
177    fn parse<'a, P: ParsablePacket<&'a [u8], ()>>(&'a mut self) -> Result<P, P::Error> {
178        call_method_on_either!(self, parse)
179    }
180    fn parse_with<'a, ParseArgs, P: ParsablePacket<&'a [u8], ParseArgs>>(
181        &'a mut self,
182        args: ParseArgs,
183    ) -> Result<P, P::Error> {
184        call_method_on_either!(self, parse_with, args)
185    }
186}
187
188impl<A, B> FragmentedBufferMut for Either<A, B>
189where
190    A: FragmentedBufferMut,
191    B: FragmentedBufferMut,
192{
193    fn with_bytes_mut<R, F>(&mut self, f: F) -> R
194    where
195        F: for<'a, 'b> FnOnce(FragmentedBytesMut<'a, 'b>) -> R,
196    {
197        call_method_on_either!(self, with_bytes_mut, f)
198    }
199}
200
201impl<A, B> ParseBufferMut for Either<A, B>
202where
203    A: ParseBufferMut,
204    B: ParseBufferMut,
205{
206    fn parse_mut<'a, P: ParsablePacket<&'a mut [u8], ()>>(&'a mut self) -> Result<P, P::Error> {
207        call_method_on_either!(self, parse_mut)
208    }
209    fn parse_with_mut<'a, ParseArgs, P: ParsablePacket<&'a mut [u8], ParseArgs>>(
210        &'a mut self,
211        args: ParseArgs,
212    ) -> Result<P, P::Error> {
213        call_method_on_either!(self, parse_with_mut, args)
214    }
215}
216
217impl<A, B> GrowBuffer for Either<A, B>
218where
219    A: GrowBuffer,
220    B: GrowBuffer,
221{
222    #[inline]
223    fn with_parts<O, F>(&self, f: F) -> O
224    where
225        F: for<'a, 'b> FnOnce(&'a [u8], FragmentedBytes<'a, 'b>, &'a [u8]) -> O,
226    {
227        call_method_on_either!(self, with_parts, f)
228    }
229    fn capacity(&self) -> usize {
230        call_method_on_either!(self, capacity)
231    }
232    fn prefix_len(&self) -> usize {
233        call_method_on_either!(self, prefix_len)
234    }
235    fn suffix_len(&self) -> usize {
236        call_method_on_either!(self, suffix_len)
237    }
238    fn grow_front(&mut self, n: usize) {
239        call_method_on_either!(self, grow_front, n)
240    }
241    fn grow_back(&mut self, n: usize) {
242        call_method_on_either!(self, grow_back, n)
243    }
244    fn reset(&mut self) {
245        call_method_on_either!(self, reset)
246    }
247}
248
249impl<A, B> GrowBufferMut for Either<A, B>
250where
251    A: GrowBufferMut,
252    B: GrowBufferMut,
253{
254    fn with_parts_mut<O, F>(&mut self, f: F) -> O
255    where
256        F: for<'a, 'b> FnOnce(&'a mut [u8], FragmentedBytesMut<'a, 'b>, &'a mut [u8]) -> O,
257    {
258        call_method_on_either!(self, with_parts_mut, f)
259    }
260
261    fn serialize<BB: PacketBuilder>(&mut self, builder: BB) {
262        call_method_on_either!(self, serialize, builder)
263    }
264}
265
266impl<A, B> Buffer for Either<A, B>
267where
268    A: Buffer,
269    B: Buffer,
270{
271    fn parse_with_view<'a, ParseArgs, P: ParsablePacket<&'a [u8], ParseArgs>>(
272        &'a mut self,
273        args: ParseArgs,
274    ) -> Result<(P, &'a [u8]), P::Error> {
275        call_method_on_either!(self, parse_with_view, args)
276    }
277}
278
279impl<A: AsRef<[u8]>, B: AsRef<[u8]>> AsRef<[u8]> for Either<A, B> {
280    fn as_ref(&self) -> &[u8] {
281        call_method_on_either!(self, as_ref)
282    }
283}
284
285impl<A: AsMut<[u8]>, B: AsMut<[u8]>> AsMut<[u8]> for Either<A, B> {
286    fn as_mut(&mut self) -> &mut [u8] {
287        call_method_on_either!(self, as_mut)
288    }
289}
290
291/// A byte slice wrapper providing buffer functionality.
292///
293/// A `Buf` wraps a byte slice (a type which implements `AsRef<[u8]>` or
294/// `AsMut<[u8]>`) and implements various buffer traits by keeping track of
295/// prefix, body, and suffix offsets within the byte slice.
296#[derive(Clone, Debug)]
297pub struct Buf<B> {
298    buf: B,
299    body: Range<usize>,
300}
301
302impl<B: AsRef<[u8]>> PartialEq for Buf<B> {
303    fn eq(&self, other: &Self) -> bool {
304        let self_slice = AsRef::<[u8]>::as_ref(self);
305        let other_slice = AsRef::<[u8]>::as_ref(other);
306        PartialEq::eq(self_slice, other_slice)
307    }
308}
309
310impl<B: AsRef<[u8]>> Eq for Buf<B> {}
311
312impl Buf<Vec<u8>> {
313    /// Extracts the contained data trimmed to the buffer's range.
314    pub fn into_inner(self) -> Vec<u8> {
315        let Buf { mut buf, body } = self;
316        let len = body.end - body.start;
317        let _ = buf.drain(..body.start);
318        buf.truncate(len);
319        buf
320    }
321}
322
323impl<B: AsRef<[u8]>> Buf<B> {
324    /// Constructs a new `Buf`.
325    ///
326    /// `new` constructs a new `Buf` from a buffer and a body range. The bytes
327    /// within the range will be the body, the bytes before the range will be
328    /// the prefix, and the bytes after the range will be the suffix.
329    ///
330    /// # Panics
331    ///
332    /// Panics if `range` is out of bounds of `buf`, or if it is nonsensical
333    /// (the end precedes the start).
334    pub fn new<R: RangeBounds<usize>>(buf: B, body: R) -> Buf<B> {
335        let len = buf.as_ref().len();
336        Buf { buf, body: canonicalize_range(len, &body) }
337    }
338
339    /// Constructs a [`BufView`] which will be a [`BufferView`] into this `Buf`.
340    pub fn buffer_view(&mut self) -> BufView<'_> {
341        BufView { buf: &self.buf.as_ref()[self.body.clone()], body: &mut self.body }
342    }
343}
344
345impl<B: AsRef<[u8]> + AsMut<[u8]>> Buf<B> {
346    /// Constructs a [`BufViewMut`] which will be a [`BufferViewMut`] into this `Buf`.
347    pub fn buffer_view_mut(&mut self) -> BufViewMut<'_> {
348        BufViewMut { buf: &mut self.buf.as_mut()[self.body.clone()], body: &mut self.body }
349    }
350}
351
352impl<B: AsRef<[u8]>> FragmentedBuffer for Buf<B> {
353    fragmented_buffer_method_impls!();
354}
355impl<B: AsRef<[u8]>> ContiguousBuffer for Buf<B> {}
356impl<B: AsRef<[u8]>> ShrinkBuffer for Buf<B> {
357    fn shrink<R: RangeBounds<usize>>(&mut self, range: R) {
358        let len = self.len();
359        let mut range = canonicalize_range(len, &range);
360        range.start += self.body.start;
361        range.end += self.body.start;
362        self.body = range;
363    }
364
365    fn shrink_front(&mut self, n: usize) {
366        assert!(n <= self.len());
367        self.body.start += n;
368    }
369    fn shrink_back(&mut self, n: usize) {
370        assert!(n <= self.len());
371        self.body.end -= n;
372    }
373}
374impl<B: AsRef<[u8]>> ParseBuffer for Buf<B> {
375    fn parse_with<'a, ParseArgs, P: ParsablePacket<&'a [u8], ParseArgs>>(
376        &'a mut self,
377        args: ParseArgs,
378    ) -> Result<P, P::Error> {
379        P::parse(self.buffer_view(), args)
380    }
381}
382
383impl<B: AsRef<[u8]> + AsMut<[u8]>> FragmentedBufferMut for Buf<B> {
384    fragmented_buffer_mut_method_impls!();
385}
386
387impl<B: AsRef<[u8]> + AsMut<[u8]>> ParseBufferMut for Buf<B> {
388    fn parse_with_mut<'a, ParseArgs, P: ParsablePacket<&'a mut [u8], ParseArgs>>(
389        &'a mut self,
390        args: ParseArgs,
391    ) -> Result<P, P::Error> {
392        P::parse_mut(self.buffer_view_mut(), args)
393    }
394}
395
396impl<B: AsRef<[u8]>> GrowBuffer for Buf<B> {
397    fn with_parts<O, F>(&self, f: F) -> O
398    where
399        F: for<'a, 'b> FnOnce(&'a [u8], FragmentedBytes<'a, 'b>, &'a [u8]) -> O,
400    {
401        let (prefix, buf) = self.buf.as_ref().split_at(self.body.start);
402        let (body, suffix) = buf.split_at(self.body.end - self.body.start);
403        let mut body = [&body[..]];
404        f(prefix, body.as_fragmented_byte_slice(), suffix)
405    }
406    fn capacity(&self) -> usize {
407        self.buf.as_ref().len()
408    }
409    fn prefix_len(&self) -> usize {
410        self.body.start
411    }
412    fn suffix_len(&self) -> usize {
413        self.buf.as_ref().len() - self.body.end
414    }
415    fn grow_front(&mut self, n: usize) {
416        assert!(n <= self.body.start);
417        self.body.start -= n;
418    }
419    fn grow_back(&mut self, n: usize) {
420        assert!(n <= self.buf.as_ref().len() - self.body.end);
421        self.body.end += n;
422    }
423}
424
425impl<B: AsRef<[u8]> + AsMut<[u8]>> GrowBufferMut for Buf<B> {
426    fn with_parts_mut<O, F>(&mut self, f: F) -> O
427    where
428        F: for<'a, 'b> FnOnce(&'a mut [u8], FragmentedBytesMut<'a, 'b>, &'a mut [u8]) -> O,
429    {
430        let (prefix, buf) = self.buf.as_mut().split_at_mut(self.body.start);
431        let (body, suffix) = buf.split_at_mut(self.body.end - self.body.start);
432        let mut body = [&mut body[..]];
433        f(prefix, body.as_fragmented_byte_slice(), suffix)
434    }
435}
436
437impl<B: AsRef<[u8]>> AsRef<[u8]> for Buf<B> {
438    fn as_ref(&self) -> &[u8] {
439        &self.buf.as_ref()[self.body.clone()]
440    }
441}
442
443impl<B: AsMut<[u8]>> AsMut<[u8]> for Buf<B> {
444    fn as_mut(&mut self) -> &mut [u8] {
445        &mut self.buf.as_mut()[self.body.clone()]
446    }
447}
448
449impl<B: AsRef<[u8]>> Buffer for Buf<B> {
450    fn parse_with_view<'a, ParseArgs, P: ParsablePacket<&'a [u8], ParseArgs>>(
451        &'a mut self,
452        args: ParseArgs,
453    ) -> Result<(P, &'a [u8]), P::Error> {
454        let Self { body, ref buf } = self;
455        let body_before = body.clone();
456        let view = BufView { buf: &buf.as_ref()[body.clone()], body };
457        P::parse(view, args).map(|r| (r, &buf.as_ref()[body_before]))
458    }
459}
460
461/// A [`BufferView`] into a [`Buf`].
462///
463/// A `BufView` is constructed by [`Buf::buffer_view`], and implements
464/// `BufferView`, providing a view into the `Buf` from which it was constructed.
465pub struct BufView<'a> {
466    buf: &'a [u8],
467    body: &'a mut Range<usize>,
468}
469
470impl<'a> BufferView<&'a [u8]> for BufView<'a> {
471    fn take_front(&mut self, n: usize) -> Option<&'a [u8]> {
472        if self.len() < n {
473            return None;
474        }
475        self.body.start += n;
476        Some(take_front(&mut self.buf, n))
477    }
478
479    fn take_back(&mut self, n: usize) -> Option<&'a [u8]> {
480        if self.len() < n {
481            return None;
482        }
483        self.body.end -= n;
484        Some(take_back(&mut self.buf, n))
485    }
486
487    fn into_rest(self) -> &'a [u8] {
488        self.buf
489    }
490}
491
492impl<'a> AsRef<[u8]> for BufView<'a> {
493    fn as_ref(&self) -> &[u8] {
494        self.buf
495    }
496}
497
498/// A [`BufferViewMut`] into a [`Buf`].
499///
500/// A `BufViewMut` is constructed by [`Buf::buffer_view_mut`], and implements
501/// `BufferViewMut`, providing a mutable view into the `Buf` from which it was
502/// constructed.
503pub struct BufViewMut<'a> {
504    buf: &'a mut [u8],
505    body: &'a mut Range<usize>,
506}
507
508impl<'a> BufferView<&'a mut [u8]> for BufViewMut<'a> {
509    fn take_front(&mut self, n: usize) -> Option<&'a mut [u8]> {
510        if self.len() < n {
511            return None;
512        }
513        self.body.start += n;
514        Some(take_front_mut(&mut self.buf, n))
515    }
516
517    fn take_back(&mut self, n: usize) -> Option<&'a mut [u8]> {
518        if self.len() < n {
519            return None;
520        }
521        self.body.end -= n;
522        Some(take_back_mut(&mut self.buf, n))
523    }
524
525    fn into_rest(self) -> &'a mut [u8] {
526        self.buf
527    }
528}
529
530impl<'a> BufferViewMut<&'a mut [u8]> for BufViewMut<'a> {}
531
532impl<'a> AsRef<[u8]> for BufViewMut<'a> {
533    fn as_ref(&self) -> &[u8] {
534        self.buf
535    }
536}
537
538impl<'a> AsMut<[u8]> for BufViewMut<'a> {
539    fn as_mut(&mut self) -> &mut [u8] {
540        self.buf
541    }
542}
543
544/// The constraints required by a [`PacketBuilder`].
545///
546/// `PacketConstraints` represents the constraints that must be satisfied in
547/// order to serialize a `PacketBuilder`.
548///
549/// A `PacketConstraints`, `c`, guarantees two properties:
550/// - `c.max_body_len() >= c.min_body_len()`
551/// - `c.header_len() + c.min_body_len() + c.footer_len()` does not overflow
552///   `usize`
553///
554/// It is not possible (using safe code) to obtain a `PacketConstraints` which
555/// violates these properties, so code may rely for its correctness on the
556/// assumption that these properties hold.
557#[derive(Copy, Clone, Debug, Eq, PartialEq)]
558pub struct PacketConstraints {
559    header_len: usize,
560    footer_len: usize,
561    min_body_len: usize,
562    max_body_len: usize,
563}
564
565impl PacketConstraints {
566    /// A no-op `PacketConstraints` which does not add any constraints - there
567    /// is no header, footer, minimum body length requirement, or maximum body
568    /// length requirement.
569    pub const UNCONSTRAINED: Self =
570        Self { header_len: 0, footer_len: 0, min_body_len: 0, max_body_len: usize::MAX };
571
572    /// Constructs a new `PacketConstraints`.
573    ///
574    /// # Panics
575    ///
576    /// `new` panics if the arguments violate the validity properties of
577    /// `PacketConstraints` - if `max_body_len < min_body_len`, or if
578    /// `header_len + min_body_len + footer_len` overflows `usize`.
579    #[inline]
580    pub fn new(
581        header_len: usize,
582        footer_len: usize,
583        min_body_len: usize,
584        max_body_len: usize,
585    ) -> PacketConstraints {
586        PacketConstraints::try_new(header_len, footer_len, min_body_len, max_body_len).expect(
587            "max_body_len < min_body_len or header_len + min_body_len + footer_len overflows usize",
588        )
589    }
590
591    /// Tries to construct a new `PacketConstraints`.
592    ///
593    /// `new` returns `None` if the provided values violate the validity
594    /// properties of `PacketConstraints` - if `max_body_len < min_body_len`, or
595    /// if `header_len + min_body_len + footer_len` overflows `usize`.
596    #[inline]
597    pub fn try_new(
598        header_len: usize,
599        footer_len: usize,
600        min_body_len: usize,
601        max_body_len: usize,
602    ) -> Option<PacketConstraints> {
603        // Test case 3 in test_packet_constraints
604        let header_min_body_footer_overflows = header_len
605            .checked_add(min_body_len)
606            .and_then(|sum| sum.checked_add(footer_len))
607            .is_none();
608        // Test case 5 in test_packet_constraints
609        let max_less_than_min = max_body_len < min_body_len;
610        if max_less_than_min || header_min_body_footer_overflows {
611            return None;
612        }
613        Some(PacketConstraints { header_len, footer_len, min_body_len, max_body_len })
614    }
615
616    /// Constructs a new `PacketConstraints` with a given `max_body_len`.
617    ///
618    /// The `header_len`, `footer_len`, and `min_body_len` are all `0`.
619    #[inline]
620    pub fn with_max_body_len(max_body_len: usize) -> PacketConstraints {
621        // SAFETY:
622        // - `max_body_len >= min_body_len` by construction
623        // - `header_len + min_body_len + footer_len` is 0 and thus does not
624        //   overflow `usize`
625        PacketConstraints { header_len: 0, footer_len: 0, min_body_len: 0, max_body_len }
626    }
627
628    /// The number of bytes in this packet's header.
629    #[inline]
630    pub fn header_len(&self) -> usize {
631        self.header_len
632    }
633
634    /// The number of bytes in this packet's footer.
635    #[inline]
636    pub fn footer_len(&self) -> usize {
637        self.footer_len
638    }
639
640    /// The minimum body length (in bytes) required by this packet in order to
641    /// avoid adding padding.
642    ///
643    /// `min_body_len` returns the minimum number of body bytes required in
644    /// order to avoid adding padding. Note that, if padding bytes are required,
645    /// they may not necessarily belong immediately following the body,
646    /// depending on which packet layer imposes the minimum. In particular, in a
647    /// nested packet, padding goes after the body of the layer which imposes
648    /// the minimum. This means that, if the layer that imposes the minimum is
649    /// not the innermost one, then padding must be added not after the
650    /// innermost body, but instead in between footers.
651    /// [`NestedPacketBuilder::serialize_into`] is responsible for inserting
652    /// padding when serializing nested packets.
653    ///
654    /// If there is no minimum body length, this returns 0.
655    #[inline]
656    pub fn min_body_len(&self) -> usize {
657        self.min_body_len
658    }
659
660    /// The maximum length (in bytes) of a body allowed by this packet.
661    ///
662    /// If there is no maximum body length, this returns [`core::usize::MAX`].
663    #[inline]
664    pub fn max_body_len(&self) -> usize {
665        self.max_body_len
666    }
667
668    /// Attempts to encapsulate `self` in `outer`.
669    ///
670    /// Upon success, `try_encapsulate` returns a `PacketConstraints` which
671    /// represents the encapsulation of `self` in `outer`. Its header length,
672    /// footer length, minimum body length, and maximum body length are set
673    /// accordingly.
674    ///
675    /// This is probably not the method you want to use; consider
676    /// [`Serializer::encapsulate`] instead.
677    pub fn try_encapsulate(&self, outer: &Self) -> Option<PacketConstraints> {
678        let inner = self;
679        // Test case 1 in test_packet_constraints
680        let header_len = inner.header_len.checked_add(outer.header_len)?;
681        // Test case 2 in test_packet_constraints
682        let footer_len = inner.footer_len.checked_add(outer.footer_len)?;
683        // This is guaranteed not to overflow by the invariants on
684        // PacketConstraint.
685        let inner_header_footer_len = inner.header_len + inner.footer_len;
686        // Note the saturating_sub here - it's OK if the inner PacketBuilder
687        // more than satisfies the outer PacketBuilder's minimum body length
688        // requirement.
689        let min_body_len = cmp::max(
690            outer.min_body_len.saturating_sub(inner_header_footer_len),
691            inner.min_body_len,
692        );
693        // Note the checked_sub here - it's NOT OK if the inner PacketBuilder
694        // exceeds the outer PacketBuilder's maximum body length requirement.
695        //
696        // Test case 4 in test_packet_constraints
697        let max_body_len =
698            cmp::min(outer.max_body_len.checked_sub(inner_header_footer_len)?, inner.max_body_len);
699        // It's still possible that `min_body_len > max_body_len` or that
700        // `header_len + min_body_len + footer_len` overflows `usize`; `try_new`
701        // checks those constraints for us.
702        PacketConstraints::try_new(header_len, footer_len, min_body_len, max_body_len)
703    }
704}
705
706/// The target buffers into which [`PacketBuilder::serialize`] serializes its
707/// header and footer.
708pub struct SerializeTarget<'a> {
709    #[allow(missing_docs)]
710    pub header: &'a mut [u8],
711    #[allow(missing_docs)]
712    pub footer: &'a mut [u8],
713}
714
715/// A builder capable of serializing a packet's headers and footers.
716///
717/// A `PacketBuilder` describes a packet's headers and footers, and is capable
718/// of serializing that packet into an existing buffer via the `serialize`
719/// method. A `PacketBuilder` never describes a body - one must always be
720/// provided in order to call `serialize`.
721///
722/// Thanks to a blanket implementation, every `PacketBuilder` is also a
723/// [`NestedPacketBuilder`]. While a `PacketBuilder` represents exactly one
724/// "layer" of a packet - a pair of a header and a footer - a
725/// `NestedPacketBuilder` can represent multiple nested layers of a packet, and
726/// can be composed from other `NestedPacketBuilder`s. See the trait
727/// documentation for more details.
728///
729/// `()` may be used as an "empty" `PacketBuilder` with no header, footer,
730/// minimum body length requirement, or maximum body length requirement.
731pub trait PacketBuilder {
732    /// Gets the constraints for this `PacketBuilder`.
733    fn constraints(&self) -> PacketConstraints;
734
735    /// Serializes this packet into an existing buffer.
736    ///
737    /// *This method is usually called by this crate during the serialization of
738    /// a [`Serializer`], not directly by the user.*
739    ///
740    /// # Preconditions
741    ///
742    /// The caller is responsible for initializing `body` with the body to be
743    /// encapsulated, and for ensuring that the body satisfies both the minimum
744    /// and maximum body length requirements, possibly by adding padding or by
745    /// truncating the body.
746    ///
747    /// # Postconditions
748    ///
749    /// `serialize` is responsible for serializing its header and footer into
750    /// `target.header` and `target.footer` respectively.
751    ///
752    /// # Security
753    ///
754    /// `serialize` must initialize the bytes of the header and footer, even if
755    /// only to zero, in order to avoid leaking the contents of packets
756    /// previously stored in the same buffer.
757    ///
758    /// # Panics
759    ///
760    /// May panic if the `target.header` or `target.footer` are not large enough
761    /// to fit the packet's header and footer respectively, or if the body does
762    /// not satisfy the minimum or maximum body length requirements.
763    fn serialize(&self, target: &mut SerializeTarget<'_>, body: FragmentedBytesMut<'_, '_>);
764}
765
766impl<'a, B: PacketBuilder> PacketBuilder for &'a B {
767    #[inline]
768    fn constraints(&self) -> PacketConstraints {
769        B::constraints(self)
770    }
771    #[inline]
772    fn serialize(&self, target: &mut SerializeTarget<'_>, body: FragmentedBytesMut<'_, '_>) {
773        B::serialize(self, target, body)
774    }
775}
776
777impl<'a, B: PacketBuilder> PacketBuilder for &'a mut B {
778    #[inline]
779    fn constraints(&self) -> PacketConstraints {
780        B::constraints(self)
781    }
782    #[inline]
783    fn serialize(&self, target: &mut SerializeTarget<'_>, body: FragmentedBytesMut<'_, '_>) {
784        B::serialize(self, target, body)
785    }
786}
787
788impl PacketBuilder for () {
789    #[inline]
790    fn constraints(&self) -> PacketConstraints {
791        PacketConstraints::UNCONSTRAINED
792    }
793    #[inline]
794    fn serialize(&self, _target: &mut SerializeTarget<'_>, _body: FragmentedBytesMut<'_, '_>) {}
795}
796
797impl PacketBuilder for Never {
798    fn constraints(&self) -> PacketConstraints {
799        match *self {}
800    }
801    fn serialize(&self, _target: &mut SerializeTarget<'_>, _body: FragmentedBytesMut<'_, '_>) {}
802}
803
804/// One object encapsulated in another one.
805///
806/// `Nested`s are constructed using the [`NestedPacketBuilder::encapsulate`] and
807/// [`Serializer::encapsulate`] methods.
808///
809/// When `I: NestedPacketBuilder` and `O: NestedPacketBuilder`, `Nested<I, O>`
810/// implements [`NestedPacketBuilder`]. When `I: Serializer` and `O:
811/// NestedPacketBuilder`, `Nested<I, O>` implements [`Serializer`].
812#[derive(Copy, Clone, Debug, Eq, PartialEq)]
813pub struct Nested<I, O> {
814    inner: I,
815    outer: O,
816}
817
818impl<I, O> Nested<I, O> {
819    /// Consumes this `Nested` and returns the inner object, discarding the
820    /// outer one.
821    #[inline]
822    pub fn into_inner(self) -> I {
823        self.inner
824    }
825
826    /// Consumes this `Nested` and returns the outer object, discarding the
827    /// inner one.
828    #[inline]
829    pub fn into_outer(self) -> O {
830        self.outer
831    }
832
833    #[inline]
834    pub fn inner(&self) -> &I {
835        &self.inner
836    }
837
838    #[inline]
839    pub fn inner_mut(&mut self) -> &mut I {
840        &mut self.inner
841    }
842
843    #[inline]
844    pub fn outer(&self) -> &O {
845        &self.outer
846    }
847
848    #[inline]
849    pub fn outer_mut(&mut self) -> &mut O {
850        &mut self.outer
851    }
852}
853
854/// A [`PacketBuilder`] which has no header or footer, but which imposes a
855/// maximum body length constraint.
856///
857/// `LimitedSizePacketBuilder`s are constructed using the
858/// [`Serializer::with_size_limit`] method.
859#[derive(Copy, Clone, Debug)]
860#[cfg_attr(test, derive(Eq, PartialEq))]
861pub struct LimitedSizePacketBuilder {
862    /// The maximum body length.
863    pub limit: usize,
864}
865
866impl PacketBuilder for LimitedSizePacketBuilder {
867    fn constraints(&self) -> PacketConstraints {
868        PacketConstraints::with_max_body_len(self.limit)
869    }
870
871    fn serialize(&self, _target: &mut SerializeTarget<'_>, _body: FragmentedBytesMut<'_, '_>) {}
872}
873
874/// A builder capable of serializing packets - which do not encapsulate other
875/// packets - into an existing buffer.
876///
877/// An `InnerPacketBuilder` describes a packet, and is capable of serializing
878/// that packet into an existing buffer via the `serialize` method. Unlike the
879/// [`PacketBuilder`] trait, it describes a packet which does not encapsulate
880/// other packets.
881///
882/// # Notable implementations
883///
884/// `InnerPacketBuilder` is implemented for `&[u8]`, `&mut [u8]`, and `Vec<u8>`
885/// by treating the contents of the slice/`Vec` as the contents of the packet to
886/// be serialized.
887pub trait InnerPacketBuilder {
888    /// The number of bytes consumed by this packet.
889    fn bytes_len(&self) -> usize;
890
891    /// Serializes this packet into an existing buffer.
892    ///
893    /// `serialize` is called with a buffer of length `self.bytes_len()`, and is
894    /// responsible for serializing the packet into the buffer.
895    ///
896    /// # Security
897    ///
898    /// All of the bytes of the buffer should be initialized, even if only to
899    /// zero, in order to avoid leaking the contents of packets previously
900    /// stored in the same buffer.
901    ///
902    /// # Panics
903    ///
904    /// May panic if `buffer.len() != self.bytes_len()`.
905    fn serialize(&self, buffer: &mut [u8]);
906
907    /// Converts this `InnerPacketBuilder` into a [`Serializer`].
908    ///
909    /// `into_serializer` is like [`into_serializer_with`], except that no
910    /// buffer is provided for reuse in serialization.
911    ///
912    /// [`into_serializer_with`]: InnerPacketBuilder::into_serializer_with
913    #[inline]
914    fn into_serializer(self) -> InnerSerializer<Self, EmptyBuf>
915    where
916        Self: Sized,
917    {
918        self.into_serializer_with(EmptyBuf)
919    }
920
921    /// Converts this `InnerPacketBuilder` into a [`Serializer`] with a buffer
922    /// that can be used for serialization.
923    ///
924    /// `into_serializer_with` consumes a buffer and converts `self` into a type
925    /// which implements `Serialize` by treating it as the innermost body to be
926    /// contained within any encapsulating [`PacketBuilder`]s. During
927    /// serialization, `buffer` will be provided to the [`BufferProvider`],
928    /// allowing it to reuse the buffer for serialization and avoid allocating a
929    /// new one if possible.
930    ///
931    /// `buffer` will have its body shrunk to be zero bytes before the
932    /// `InnerSerializer` is constructed.
933    fn into_serializer_with<B: ShrinkBuffer>(self, mut buffer: B) -> InnerSerializer<Self, B>
934    where
935        Self: Sized,
936    {
937        buffer.shrink_back_to(0);
938        InnerSerializer { inner: self, buffer }
939    }
940}
941
942impl<'a, I: InnerPacketBuilder> InnerPacketBuilder for &'a I {
943    #[inline]
944    fn bytes_len(&self) -> usize {
945        I::bytes_len(self)
946    }
947    #[inline]
948    fn serialize(&self, buffer: &mut [u8]) {
949        I::serialize(self, buffer)
950    }
951}
952impl<'a, I: InnerPacketBuilder> InnerPacketBuilder for &'a mut I {
953    #[inline]
954    fn bytes_len(&self) -> usize {
955        I::bytes_len(self)
956    }
957    #[inline]
958    fn serialize(&self, buffer: &mut [u8]) {
959        I::serialize(self, buffer)
960    }
961}
962impl<'a> InnerPacketBuilder for &'a [u8] {
963    #[inline]
964    fn bytes_len(&self) -> usize {
965        self.len()
966    }
967    #[inline]
968    fn serialize(&self, buffer: &mut [u8]) {
969        buffer.copy_from_slice(self);
970    }
971}
972impl<'a> InnerPacketBuilder for &'a mut [u8] {
973    #[inline]
974    fn bytes_len(&self) -> usize {
975        self.len()
976    }
977    #[inline]
978    fn serialize(&self, buffer: &mut [u8]) {
979        buffer.copy_from_slice(self);
980    }
981}
982impl<'a> InnerPacketBuilder for Vec<u8> {
983    #[inline]
984    fn bytes_len(&self) -> usize {
985        self.len()
986    }
987    #[inline]
988    fn serialize(&self, buffer: &mut [u8]) {
989        buffer.copy_from_slice(self.as_slice());
990    }
991}
992impl<const N: usize> InnerPacketBuilder for ArrayVec<u8, N> {
993    fn bytes_len(&self) -> usize {
994        self.as_slice().bytes_len()
995    }
996    fn serialize(&self, buffer: &mut [u8]) {
997        self.as_slice().serialize(buffer);
998    }
999}
1000
1001/// An [`InnerPacketBuilder`] created from any [`B: SplitByteSlice`].
1002///
1003/// `ByteSliceInnerPacketBuilder<B>` implements `InnerPacketBuilder` so long as
1004/// `B: SplitByteSlice`.
1005///
1006/// [`B: SplitByteSlice`]: zerocopy::SplitByteSlice
1007pub struct ByteSliceInnerPacketBuilder<B>(pub B);
1008
1009impl<B: SplitByteSlice> InnerPacketBuilder for ByteSliceInnerPacketBuilder<B> {
1010    fn bytes_len(&self) -> usize {
1011        self.0.deref().bytes_len()
1012    }
1013    fn serialize(&self, buffer: &mut [u8]) {
1014        self.0.deref().serialize(buffer)
1015    }
1016}
1017
1018impl<B: SplitByteSlice> Debug for ByteSliceInnerPacketBuilder<B> {
1019    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1020        write!(f, "ByteSliceInnerPacketBuilder({:?})", self.0.as_ref())
1021    }
1022}
1023
1024/// An error in serializing a packet.
1025///
1026/// `SerializeError` is the type of errors returned from methods on the
1027/// [`Serializer`] trait. The `Alloc` variant indicates that a new buffer could
1028/// not be allocated, while the `SizeLimitExceeded` variant indicates that a
1029/// size limit constraint was exceeded.
1030#[derive(Copy, Clone, Debug, Eq, PartialEq)]
1031pub enum SerializeError<A> {
1032    /// A new buffer could not be allocated.
1033    Alloc(A),
1034    /// The size limit constraint was exceeded.
1035    SizeLimitExceeded,
1036}
1037
1038impl<A> SerializeError<A> {
1039    /// Is this `SerializeError::Alloc`?
1040    #[inline]
1041    pub fn is_alloc(&self) -> bool {
1042        match self {
1043            SerializeError::Alloc(_) => true,
1044            SerializeError::SizeLimitExceeded => false,
1045        }
1046    }
1047
1048    /// Is this `SerializeError::SizeLimitExceeded`?
1049    #[inline]
1050    pub fn is_size_limit_exceeded(&self) -> bool {
1051        match self {
1052            SerializeError::Alloc(_) => false,
1053            SerializeError::SizeLimitExceeded => true,
1054        }
1055    }
1056
1057    /// Maps the [`SerializeError::Alloc`] error type.
1058    pub fn map_alloc<T, F: FnOnce(A) -> T>(self, f: F) -> SerializeError<T> {
1059        match self {
1060            SerializeError::Alloc(a) => SerializeError::Alloc(f(a)),
1061            SerializeError::SizeLimitExceeded => SerializeError::SizeLimitExceeded,
1062        }
1063    }
1064}
1065
1066impl<A> From<A> for SerializeError<A> {
1067    fn from(a: A) -> SerializeError<A> {
1068        SerializeError::Alloc(a)
1069    }
1070}
1071
1072/// The error returned when a buffer is too short to hold a serialized packet,
1073/// and the [`BufferProvider`] is incapable of allocating a new one.
1074///
1075/// `BufferTooShortError` is returned by the [`Serializer`] methods
1076/// [`serialize_no_alloc`] and [`serialize_no_alloc_outer`].
1077///
1078/// [`serialize_no_alloc`]: Serializer::serialize_no_alloc
1079/// [`serialize_no_alloc_outer`]: Serializer::serialize_no_alloc_outer
1080#[derive(Copy, Clone, Debug, Eq, PartialEq)]
1081pub struct BufferTooShortError;
1082
1083/// An object capable of providing buffers which satisfy certain constraints.
1084///
1085/// A `BufferProvider<Input, Output>` is an object which is capable of consuming
1086/// a buffer of type `Input` and, either by reusing it or by allocating a new
1087/// one and copying the input buffer's body into it, producing a buffer of type
1088/// `Output` which meets certain prefix and suffix length constraints.
1089///
1090/// A `BufferProvider` must always be provided when serializing a
1091/// [`Serializer`].
1092///
1093/// Implementors may find the helper function [`try_reuse_buffer`] useful.
1094///
1095/// For clients who don't need the full expressive power of this trait, the
1096/// simpler [`BufferAlloc`] trait is provided. It only defines how to allocate
1097/// new buffers, and two blanket impls of `BufferProvider` are provided for all
1098/// `BufferAlloc` types.
1099pub trait BufferProvider<Input, Output> {
1100    /// The type of errors returned from [`reuse_or_realloc`].
1101    ///
1102    /// [`reuse_or_realloc`]: BufferProvider::reuse_or_realloc
1103    type Error;
1104
1105    /// Attempts to produce an output buffer with the given constraints by
1106    /// allocating a new one.
1107    ///
1108    /// `alloc_no_reuse` produces a new buffer with the following invariants:
1109    /// - The output buffer must have at least `prefix` bytes of prefix
1110    /// - The output buffer must have at least `suffix` bytes of suffix
1111    /// - The output buffer must have a body of length `body` bytes.
1112    ///
1113    /// If these requirements cannot be met, then an error is returned.
1114    fn alloc_no_reuse(
1115        self,
1116        prefix: usize,
1117        body: usize,
1118        suffix: usize,
1119    ) -> Result<Output, Self::Error>;
1120
1121    /// Consumes an input buffer and attempts to produce an output buffer with
1122    /// the given constraints, either by reusing the input buffer or by
1123    /// allocating a new one and copying the body into it.
1124    ///
1125    /// `reuse_or_realloc` consumes a buffer by value, and produces a new buffer
1126    /// with the following invariants:
1127    /// - The output buffer must have at least `prefix` bytes of prefix
1128    /// - The output buffer must have at least `suffix` bytes of suffix
1129    /// - The output buffer must have the same body as the input buffer
1130    ///
1131    /// If these requirements cannot be met, then an error is returned along
1132    /// with the input buffer, which is unmodified.
1133    fn reuse_or_realloc(
1134        self,
1135        buffer: Input,
1136        prefix: usize,
1137        suffix: usize,
1138    ) -> Result<Output, (Self::Error, Input)>;
1139}
1140
1141/// An object capable of allocating new buffers.
1142///
1143/// A `BufferAlloc<Output>` is an object which is capable of allocating new
1144/// buffers of type `Output`.
1145///
1146/// [Two blanket implementations] of [`BufferProvider`] are given for any type
1147/// which implements `BufferAlloc<O>`. One blanket implementation works for any
1148/// input buffer type, `I`, and produces buffers of type `Either<I, O>` as
1149/// output. One blanket implementation works only when the input and output
1150/// buffer types are the same, and produces buffers of that type. See the
1151/// documentation on those impls for more details.
1152///
1153/// The following implementations of `BufferAlloc` are provided:
1154/// - Any `FnOnce(usize) -> Result<O, E>` implements `BufferAlloc<O, Error = E>`
1155/// - `()` implements `BufferAlloc<Never, Error = ()>` (an allocator which
1156///   always fails)
1157/// - [`new_buf_vec`] implements `BufferAlloc<Buf<Vec<u8>>, Error = Never>` (an
1158///   allocator which infallibly heap-allocates `Vec`s)
1159///
1160/// [Two blanket implementations]: trait.BufferProvider.html#implementors
1161pub trait BufferAlloc<Output> {
1162    /// The type of errors returned from [`alloc`].
1163    ///
1164    /// [`alloc`]: BufferAlloc::alloc
1165    type Error;
1166
1167    /// Attempts to allocate a new buffer of size `len`.
1168    fn alloc(self, len: usize) -> Result<Output, Self::Error>;
1169}
1170
1171impl<O, E, F: FnOnce(usize) -> Result<O, E>> BufferAlloc<O> for F {
1172    type Error = E;
1173
1174    #[inline]
1175    fn alloc(self, len: usize) -> Result<O, E> {
1176        self(len)
1177    }
1178}
1179
1180impl BufferAlloc<Never> for () {
1181    type Error = ();
1182
1183    #[inline]
1184    fn alloc(self, _len: usize) -> Result<Never, ()> {
1185        Err(())
1186    }
1187}
1188
1189/// Allocates a new `Buf<Vec<u8>>`.
1190///
1191/// `new_buf_vec(len)` is shorthand for `Ok(Buf::new(vec![0; len], ..))`. It
1192/// implements [`BufferAlloc<Buf<Vec<u8>>, Error = Never>`], and, thanks to a
1193/// blanket impl, [`BufferProvider<I, Either<I, Buf<Vec<u8>>>, Error = Never>`]
1194/// for all `I: BufferMut`, and `BufferProvider<Buf<Vec<u8>>, Buf<Vec<u8>>,
1195/// Error = Never>`.
1196///
1197/// [`BufferAlloc<Buf<Vec<u8>>, Error = Never>`]: BufferAlloc
1198/// [`BufferProvider<I, Either<I, Buf<Vec<u8>>>, Error = Never>`]: BufferProvider
1199pub fn new_buf_vec(len: usize) -> Result<Buf<Vec<u8>>, Never> {
1200    Ok(Buf::new(vec![0; len], ..))
1201}
1202
1203/// Attempts to reuse a buffer for the purposes of implementing
1204/// [`BufferProvider::reuse_or_realloc`].
1205///
1206/// `try_reuse_buffer` attempts to reuse an existing buffer to satisfy the given
1207/// prefix and suffix constraints. If it succeeds, it returns `Ok` containing a
1208/// buffer with the same body as the input, and with at least `prefix` prefix
1209/// bytes and at least `suffix` suffix bytes. Otherwise, it returns `Err`
1210/// containing the original, unmodified input buffer.
1211///
1212/// Concretely, `try_reuse_buffer` has the following behavior:
1213/// - If the prefix and suffix constraints are already met, it returns `Ok` with
1214///   the input unmodified
1215/// - If the prefix and suffix constraints are not yet met, then...
1216///   - If there is enough capacity to meet the constraints and the body is not
1217///     larger than `max_copy_bytes`, the body will be moved within the buffer
1218///     in order to meet the constraints, and it will be returned
1219///   - Otherwise, if there is not enough capacity or the body is larger than
1220///     `max_copy_bytes`, it returns `Err` with the input unmodified
1221///
1222/// `max_copy_bytes` is meant to be an estimate of how many bytes can be copied
1223/// before allocating a new buffer will be cheaper than copying.
1224#[inline]
1225pub fn try_reuse_buffer<B: GrowBufferMut + ShrinkBuffer>(
1226    mut buffer: B,
1227    prefix: usize,
1228    suffix: usize,
1229    max_copy_bytes: usize,
1230) -> Result<B, B> {
1231    let need_prefix = prefix;
1232    let need_suffix = suffix;
1233    let have_prefix = buffer.prefix_len();
1234    let have_body = buffer.len();
1235    let have_suffix = buffer.suffix_len();
1236    let need_capacity = need_prefix + have_body + need_suffix;
1237
1238    if have_prefix >= need_prefix && have_suffix >= need_suffix {
1239        // We already satisfy the prefix and suffix requirements.
1240        Ok(buffer)
1241    } else if buffer.capacity() >= need_capacity && have_body <= max_copy_bytes {
1242        // The buffer is large enough, but the body is currently too far
1243        // forward or too far backwards to satisfy the prefix or suffix
1244        // requirements, so we need to move the body within the buffer.
1245        buffer.reset();
1246
1247        // Copy the original body range to a point starting immediatley
1248        // after `prefix`. This satisfies the `prefix` constraint by
1249        // definition, and satisfies the `suffix` constraint since we know
1250        // that the total buffer capacity is sufficient to hold the total
1251        // length of the prefix, body, and suffix.
1252        buffer.copy_within(have_prefix..(have_prefix + have_body), need_prefix);
1253        buffer.shrink(need_prefix..(need_prefix + have_body));
1254        debug_assert_eq!(buffer.prefix_len(), need_prefix);
1255        debug_assert!(buffer.suffix_len() >= need_suffix);
1256        debug_assert_eq!(buffer.len(), have_body);
1257        Ok(buffer)
1258    } else {
1259        Err(buffer)
1260    }
1261}
1262
1263/// Provides an implementation of [`BufferProvider`] from a [`BufferAlloc`] `A`
1264/// that attempts to reuse the input buffer and falls back to the allocator if
1265/// the input buffer can't be reused.
1266pub struct MaybeReuseBufferProvider<A>(pub A);
1267
1268impl<I: ReusableBuffer, O: ReusableBuffer, A: BufferAlloc<O>> BufferProvider<I, Either<I, O>>
1269    for MaybeReuseBufferProvider<A>
1270{
1271    type Error = A::Error;
1272
1273    fn alloc_no_reuse(
1274        self,
1275        prefix: usize,
1276        body: usize,
1277        suffix: usize,
1278    ) -> Result<Either<I, O>, Self::Error> {
1279        let Self(alloc) = self;
1280        let need_capacity = prefix + body + suffix;
1281        BufferAlloc::alloc(alloc, need_capacity).map(|mut buf| {
1282            buf.shrink(prefix..(prefix + body));
1283            Either::B(buf)
1284        })
1285    }
1286
1287    /// If `buffer` has enough capacity to store `need_prefix + need_suffix +
1288    /// buffer.len()` bytes, then reuse `buffer`. Otherwise, allocate a new
1289    /// buffer using `A`'s [`BufferAlloc`] implementation.
1290    ///
1291    /// If there is enough capacity, but the body is too far forwards or
1292    /// backwards in the buffer to satisfy the prefix and suffix constraints,
1293    /// the body will be moved within the buffer in order to satisfy the
1294    /// constraints. This operation is linear in the length of the body.
1295    #[inline]
1296    fn reuse_or_realloc(
1297        self,
1298        buffer: I,
1299        need_prefix: usize,
1300        need_suffix: usize,
1301    ) -> Result<Either<I, O>, (A::Error, I)> {
1302        // TODO(joshlf): Maybe it's worth coming up with a heuristic for when
1303        // moving the body is likely to be more expensive than allocating
1304        // (rather than just using `usize::MAX`)? This will be tough since we
1305        // don't know anything about the performance of `A::alloc`.
1306        match try_reuse_buffer(buffer, need_prefix, need_suffix, usize::MAX) {
1307            Ok(buffer) => Ok(Either::A(buffer)),
1308            Err(buffer) => {
1309                let have_body = buffer.len();
1310                let mut buf = match BufferProvider::<I, Either<I, O>>::alloc_no_reuse(
1311                    self,
1312                    need_prefix,
1313                    have_body,
1314                    need_suffix,
1315                ) {
1316                    Ok(buf) => buf,
1317                    Err(err) => return Err((err, buffer)),
1318                };
1319
1320                buf.copy_from(&buffer);
1321                debug_assert_eq!(buf.prefix_len(), need_prefix);
1322                debug_assert!(buf.suffix_len() >= need_suffix);
1323                debug_assert_eq!(buf.len(), have_body);
1324                Ok(buf)
1325            }
1326        }
1327    }
1328}
1329
1330impl<B: ReusableBuffer, A: BufferAlloc<B>> BufferProvider<B, B> for MaybeReuseBufferProvider<A> {
1331    type Error = A::Error;
1332
1333    fn alloc_no_reuse(self, prefix: usize, body: usize, suffix: usize) -> Result<B, Self::Error> {
1334        BufferProvider::<B, Either<B, B>>::alloc_no_reuse(self, prefix, body, suffix)
1335            .map(Either::into_inner)
1336    }
1337
1338    /// If `buffer` has enough capacity to store `need_prefix + need_suffix +
1339    /// buffer.len()` bytes, then reuse `buffer`. Otherwise, allocate a new
1340    /// buffer using `A`'s [`BufferAlloc`] implementation.
1341    ///
1342    /// If there is enough capacity, but the body is too far forwards or
1343    /// backwards in the buffer to satisfy the prefix and suffix constraints,
1344    /// the body will be moved within the buffer in order to satisfy the
1345    /// constraints. This operation is linear in the length of the body.
1346    #[inline]
1347    fn reuse_or_realloc(self, buffer: B, prefix: usize, suffix: usize) -> Result<B, (A::Error, B)> {
1348        BufferProvider::<B, Either<B, B>>::reuse_or_realloc(self, buffer, prefix, suffix)
1349            .map(Either::into_inner)
1350    }
1351}
1352
1353/// Provides an implementation of [`BufferProvider`] from a [`BufferAlloc`] `A`
1354/// that never attempts to reuse the input buffer, and always create a new
1355/// buffer from the allocator `A`.
1356pub struct NoReuseBufferProvider<A>(pub A);
1357
1358impl<I: FragmentedBuffer, O: ReusableBuffer, A: BufferAlloc<O>> BufferProvider<I, O>
1359    for NoReuseBufferProvider<A>
1360{
1361    type Error = A::Error;
1362
1363    fn alloc_no_reuse(self, prefix: usize, body: usize, suffix: usize) -> Result<O, A::Error> {
1364        let Self(alloc) = self;
1365        alloc.alloc(prefix + body + suffix).map(|mut b| {
1366            b.shrink(prefix..prefix + body);
1367            b
1368        })
1369    }
1370
1371    fn reuse_or_realloc(self, buffer: I, prefix: usize, suffix: usize) -> Result<O, (A::Error, I)> {
1372        BufferProvider::<I, O>::alloc_no_reuse(self, prefix, buffer.len(), suffix)
1373            .map(|mut b| {
1374                b.copy_from(&buffer);
1375                b
1376            })
1377            .map_err(|e| (e, buffer))
1378    }
1379}
1380
1381pub trait Serializer: Sized {
1382    /// The type of buffers returned from serialization methods on this trait.
1383    type Buffer;
1384
1385    /// Serializes this `Serializer`, producing a buffer.
1386    ///
1387    /// `serialize` accepts a [`PacketBuilder`] and a [`BufferProvider`], and
1388    /// produces a buffer which contains the contents of this `Serializer`
1389    /// encapsulated in the header and footer described by the `PacketBuilder`.
1390    ///
1391    /// As `Serializer`s can be nested using the [`Nested`] type (constructed
1392    /// using the [`encapsulate`] method), the `serialize` method is recursive -
1393    /// calling it on a `Nested` will recurse into the inner `Serializer`, which
1394    /// might itself be a `Nested`, and so on. When the innermost `Serializer`
1395    /// is reached, the contained buffer is passed to the `provider`, allowing
1396    /// it to decide how to produce a buffer which is large enough to fit the
1397    /// entire packet - either by reusing the existing buffer, or by discarding
1398    /// it and allocating a new one.
1399    ///
1400    /// [`encapsulate`]: Serializer::encapsulate
1401    fn serialize<B: GrowBufferMut, P: BufferProvider<Self::Buffer, B>>(
1402        self,
1403        outer: PacketConstraints,
1404        provider: P,
1405    ) -> Result<B, (SerializeError<P::Error>, Self)>;
1406
1407    /// Serializes the data into a new buffer without consuming `self`.
1408    ///
1409    /// Creates a new buffer using `alloc` and serializes the data into that
1410    /// that new buffer. Unlike all other serialize methods,
1411    /// `serialize_new_buf` takes `self` by reference. This allows to use the
1412    /// same `Serializer` to serialize the data more than once.
1413    fn serialize_new_buf<B: ReusableBuffer, A: BufferAlloc<B>>(
1414        &self,
1415        outer: PacketConstraints,
1416        alloc: A,
1417    ) -> Result<B, SerializeError<A::Error>>;
1418
1419    /// Serializes this `Serializer`, allocating a [`Buf<Vec<u8>>`] if the
1420    /// contained buffer isn't large enough.
1421    ///
1422    /// `serialize_vec` is like [`serialize`], except that, if the contained
1423    /// buffer isn't large enough to contain the packet, a new `Vec<u8>` is
1424    /// allocated and wrapped in a [`Buf`]. If the buffer is large enough, but
1425    /// the body is too far forwards or backwards to fit the encapsulating
1426    /// headers or footers, the body will be moved within the buffer (this
1427    /// operation's cost is linear in the size of the body).
1428    ///
1429    /// `serialize_vec` is equivalent to calling `serialize` with
1430    /// [`new_buf_vec`] as the [`BufferProvider`].
1431    ///
1432    /// [`Buf<Vec<u8>>`]: Buf
1433    /// [`serialize`]: Serializer::serialize
1434    #[inline]
1435    #[allow(clippy::type_complexity)]
1436    fn serialize_vec(
1437        self,
1438        outer: PacketConstraints,
1439    ) -> Result<Either<Self::Buffer, Buf<Vec<u8>>>, (SerializeError<Never>, Self)>
1440    where
1441        Self::Buffer: ReusableBuffer,
1442    {
1443        self.serialize(outer, MaybeReuseBufferProvider(new_buf_vec))
1444    }
1445
1446    /// Serializes this `Serializer`, failing if the existing buffer is not
1447    /// large enough.
1448    ///
1449    /// `serialize_no_alloc` is like [`serialize`], except that it will fail if
1450    /// the existing buffer isn't large enough. If the buffer is large enough,
1451    /// but the body is too far forwards or backwards to fit the encapsulating
1452    /// headers or footers, the body will be moved within the buffer (this
1453    /// operation's cost is linear in the size of the body).
1454    ///
1455    /// `serialize_no_alloc` is equivalent to calling `serialize` with a
1456    /// `BufferProvider` which cannot allocate a new buffer (such as `()`).
1457    ///
1458    /// [`serialize`]: Serializer::serialize
1459    #[inline]
1460    fn serialize_no_alloc(
1461        self,
1462        outer: PacketConstraints,
1463    ) -> Result<Self::Buffer, (SerializeError<BufferTooShortError>, Self)>
1464    where
1465        Self::Buffer: ReusableBuffer,
1466    {
1467        self.serialize(outer, MaybeReuseBufferProvider(())).map(Either::into_a).map_err(
1468            |(err, slf)| {
1469                (
1470                    match err {
1471                        SerializeError::Alloc(()) => BufferTooShortError.into(),
1472                        SerializeError::SizeLimitExceeded => SerializeError::SizeLimitExceeded,
1473                    },
1474                    slf,
1475                )
1476            },
1477        )
1478    }
1479
1480    /// Serializes this `Serializer` as the outermost packet.
1481    ///
1482    /// `serialize_outer` is like [`serialize`], except that it is called when
1483    /// this `Serializer` describes the outermost packet, not encapsulated in
1484    /// any other packets. It is equivalent to calling `serialize` with an empty
1485    /// [`PacketBuilder`] (such as `()`).
1486    ///
1487    /// [`serialize`]: Serializer::serialize
1488    #[inline]
1489    fn serialize_outer<B: GrowBufferMut, P: BufferProvider<Self::Buffer, B>>(
1490        self,
1491        provider: P,
1492    ) -> Result<B, (SerializeError<P::Error>, Self)> {
1493        self.serialize(PacketConstraints::UNCONSTRAINED, provider)
1494    }
1495
1496    /// Serializes this `Serializer` as the outermost packet, allocating a
1497    /// [`Buf<Vec<u8>>`] if the contained buffer isn't large enough.
1498    ///
1499    /// `serialize_vec_outer` is like [`serialize_vec`], except that it is
1500    /// called when this `Serializer` describes the outermost packet, not
1501    /// encapsulated in any other packets. It is equivalent to calling
1502    /// `serialize_vec` with an empty [`PacketBuilder`] (such as `()`).
1503    ///
1504    /// [`Buf<Vec<u8>>`]: Buf
1505    /// [`serialize_vec`]: Serializer::serialize_vec
1506    #[inline]
1507    #[allow(clippy::type_complexity)]
1508    fn serialize_vec_outer(
1509        self,
1510    ) -> Result<Either<Self::Buffer, Buf<Vec<u8>>>, (SerializeError<Never>, Self)>
1511    where
1512        Self::Buffer: ReusableBuffer,
1513    {
1514        self.serialize_vec(PacketConstraints::UNCONSTRAINED)
1515    }
1516
1517    /// Serializes this `Serializer` as the outermost packet, failing if the
1518    /// existing buffer is not large enough.
1519    ///
1520    /// `serialize_no_alloc_outer` is like [`serialize_no_alloc`], except that
1521    /// it is called when this `Serializer` describes the outermost packet, not
1522    /// encapsulated in any other packets. It is equivalent to calling
1523    /// `serialize_no_alloc` with an empty [`PacketBuilder`] (such as `()`).
1524    ///
1525    /// [`serialize_no_alloc`]: Serializer::serialize_no_alloc
1526    #[inline]
1527    fn serialize_no_alloc_outer(
1528        self,
1529    ) -> Result<Self::Buffer, (SerializeError<BufferTooShortError>, Self)>
1530    where
1531        Self::Buffer: ReusableBuffer,
1532    {
1533        self.serialize_no_alloc(PacketConstraints::UNCONSTRAINED)
1534    }
1535
1536    /// Encapsulates this `Serializer` in another packet, producing a new
1537    /// `Serializer`.
1538    ///
1539    /// `encapsulate` consumes this `Serializer` and a [`PacketBuilder`], and
1540    /// produces a new `Serializer` which describes encapsulating this one in
1541    /// the packet described by `outer`.
1542    #[inline]
1543    fn encapsulate<B>(self, outer: B) -> Nested<Self, B> {
1544        Nested { inner: self, outer }
1545    }
1546
1547    /// Creates a new `Serializer` which will enforce a size limit.
1548    ///
1549    /// `with_size_limit` consumes this `Serializer` and limit, and produces a
1550    /// new `Serializer` which will enforce the given limit on all serialization
1551    /// requests. Note that the given limit will be enforced at this layer -
1552    /// serialization requests will be rejected if the body produced by the
1553    /// request at this layer would exceed the limit. It has no effect on
1554    /// headers or footers added by encapsulating layers outside of this one.
1555    #[inline]
1556    fn with_size_limit(self, limit: usize) -> Nested<Self, LimitedSizePacketBuilder> {
1557        self.encapsulate(LimitedSizePacketBuilder { limit })
1558    }
1559}
1560
1561/// A [`Serializer`] constructed from an [`InnerPacketBuilder`].
1562///
1563/// An `InnerSerializer` wraps an `InnerPacketBuilder` and a buffer, and
1564/// implements the `Serializer` trait. When a serialization is requested, it
1565/// either reuses the stored buffer or allocates a new one large enough to hold
1566/// itself and all outer `PacketBuilder`s.
1567#[derive(Copy, Clone, Debug, Eq, PartialEq)]
1568pub struct InnerSerializer<I, B> {
1569    inner: I,
1570    // The buffer's length must be zero since we encapsulate the buffer in a
1571    // PacketBuilder. If the length were non-zero, that would have the effect of
1572    // retaining the contents of the buffer when serializing, and putting them
1573    // immediately after the bytes of `inner`.
1574    buffer: B,
1575}
1576
1577impl<I, B> InnerSerializer<I, B> {
1578    pub fn inner(&self) -> &I {
1579        &self.inner
1580    }
1581}
1582
1583/// A wrapper for `InnerPacketBuilders` which implements `PacketBuilder` by
1584/// treating the entire `InnerPacketBuilder` as the header of the
1585/// `PacketBuilder`. This allows us to compose our InnerPacketBuilder with
1586/// the outer `PacketBuilders` into a single, large `PacketBuilder`, and then
1587/// serialize it using `self.buffer`.
1588struct InnerPacketBuilderWrapper<I>(I);
1589
1590impl<I: InnerPacketBuilder> PacketBuilder for InnerPacketBuilderWrapper<I> {
1591    fn constraints(&self) -> PacketConstraints {
1592        let Self(wrapped) = self;
1593        PacketConstraints::new(wrapped.bytes_len(), 0, 0, usize::MAX)
1594    }
1595
1596    fn serialize(&self, target: &mut SerializeTarget<'_>, _body: FragmentedBytesMut<'_, '_>) {
1597        let Self(wrapped) = self;
1598
1599        // Note that the body might be non-empty if an outer
1600        // PacketBuilder added a minimum body length constraint that
1601        // required padding.
1602        debug_assert_eq!(target.header.len(), wrapped.bytes_len());
1603        debug_assert_eq!(target.footer.len(), 0);
1604
1605        InnerPacketBuilder::serialize(wrapped, target.header);
1606    }
1607}
1608
1609impl<I: InnerPacketBuilder, B: GrowBuffer + ShrinkBuffer> Serializer for InnerSerializer<I, B> {
1610    type Buffer = B;
1611
1612    #[inline]
1613    fn serialize<BB: GrowBufferMut, P: BufferProvider<B, BB>>(
1614        self,
1615        outer: PacketConstraints,
1616        provider: P,
1617    ) -> Result<BB, (SerializeError<P::Error>, InnerSerializer<I, B>)> {
1618        let pb = InnerPacketBuilderWrapper(self.inner);
1619        debug_assert_eq!(self.buffer.len(), 0);
1620        self.buffer.encapsulate(pb).serialize(outer, provider).map_err(
1621            |(err, Nested { inner: buffer, outer: pb })| {
1622                (err, InnerSerializer { inner: pb.0, buffer })
1623            },
1624        )
1625    }
1626
1627    #[inline]
1628    fn serialize_new_buf<BB: ReusableBuffer, A: BufferAlloc<BB>>(
1629        &self,
1630        outer: PacketConstraints,
1631        alloc: A,
1632    ) -> Result<BB, SerializeError<A::Error>> {
1633        let pb = InnerPacketBuilderWrapper(&self.inner);
1634        EmptyBuf.encapsulate(pb).serialize_new_buf(outer, alloc)
1635    }
1636}
1637
1638impl<B: GrowBuffer + ShrinkBuffer> Serializer for B {
1639    type Buffer = B;
1640
1641    #[inline]
1642    fn serialize<BB: GrowBufferMut, P: BufferProvider<Self::Buffer, BB>>(
1643        self,
1644        outer: PacketConstraints,
1645        provider: P,
1646    ) -> Result<BB, (SerializeError<P::Error>, Self)> {
1647        TruncatingSerializer::new(self, TruncateDirection::NoTruncating)
1648            .serialize(outer, provider)
1649            .map_err(|(err, ser)| (err, ser.buffer))
1650    }
1651
1652    fn serialize_new_buf<BB: ReusableBuffer, A: BufferAlloc<BB>>(
1653        &self,
1654        outer: PacketConstraints,
1655        alloc: A,
1656    ) -> Result<BB, SerializeError<A::Error>> {
1657        if self.len() > outer.max_body_len() {
1658            return Err(SerializeError::SizeLimitExceeded);
1659        }
1660
1661        let padding = outer.min_body_len().saturating_sub(self.len());
1662        let tail_size = padding + outer.footer_len();
1663        let buffer_size = outer.header_len() + self.len() + tail_size;
1664        let mut buffer = alloc.alloc(buffer_size)?;
1665        buffer.shrink_front(outer.header_len());
1666        buffer.shrink_back(tail_size);
1667        buffer.copy_from(self);
1668        buffer.grow_back(padding);
1669        Ok(buffer)
1670    }
1671}
1672
1673/// Either of two serializers.
1674///
1675/// An `EitherSerializer` wraps one of two different serializer types.
1676pub enum EitherSerializer<A, B> {
1677    A(A),
1678    B(B),
1679}
1680
1681impl<A: Serializer, B: Serializer<Buffer = A::Buffer>> Serializer for EitherSerializer<A, B> {
1682    type Buffer = A::Buffer;
1683
1684    fn serialize<TB: GrowBufferMut, P: BufferProvider<Self::Buffer, TB>>(
1685        self,
1686        outer: PacketConstraints,
1687        provider: P,
1688    ) -> Result<TB, (SerializeError<P::Error>, Self)> {
1689        match self {
1690            EitherSerializer::A(s) => {
1691                s.serialize(outer, provider).map_err(|(err, s)| (err, EitherSerializer::A(s)))
1692            }
1693            EitherSerializer::B(s) => {
1694                s.serialize(outer, provider).map_err(|(err, s)| (err, EitherSerializer::B(s)))
1695            }
1696        }
1697    }
1698
1699    fn serialize_new_buf<TB: ReusableBuffer, BA: BufferAlloc<TB>>(
1700        &self,
1701        outer: PacketConstraints,
1702        alloc: BA,
1703    ) -> Result<TB, SerializeError<BA::Error>> {
1704        match self {
1705            EitherSerializer::A(s) => s.serialize_new_buf(outer, alloc),
1706            EitherSerializer::B(s) => s.serialize_new_buf(outer, alloc),
1707        }
1708    }
1709}
1710
1711/// The direction a buffer's body should be truncated from to force
1712/// it to fit within a size limit.
1713#[derive(Copy, Clone, Debug, Eq, PartialEq)]
1714pub enum TruncateDirection {
1715    /// If a buffer cannot fit within a limit, discard bytes from the
1716    /// front of the body.
1717    DiscardFront,
1718    /// If a buffer cannot fit within a limit, discard bytes from the
1719    /// end of the body.
1720    DiscardBack,
1721    /// Do not attempt to truncate a buffer to make it fit within a limit.
1722    NoTruncating,
1723}
1724
1725/// A [`Serializer`] that truncates its body if it would exceed a size limit.
1726///
1727/// `TruncatingSerializer` wraps a buffer, and implements `Serializer`. Unlike
1728/// the blanket impl of `Serializer` for `B: GrowBuffer + ShrinkBuffer`, if the
1729/// buffer's body exceeds the size limit constraint passed to
1730/// `Serializer::serialize`, the body is truncated to fit.
1731///
1732/// Note that this does not guarantee that size limit exceeded errors will not
1733/// occur. The size limit may be small enough that the encapsulating headers
1734/// alone exceed the size limit.  There may also be a minimum body length
1735/// constraint which is larger than the size limit.
1736#[derive(Copy, Clone, Debug)]
1737#[cfg_attr(test, derive(Eq, PartialEq))]
1738pub struct TruncatingSerializer<B> {
1739    buffer: B,
1740    direction: TruncateDirection,
1741}
1742
1743impl<B> TruncatingSerializer<B> {
1744    /// Constructs a new `TruncatingSerializer`.
1745    pub fn new(buffer: B, direction: TruncateDirection) -> TruncatingSerializer<B> {
1746        TruncatingSerializer { buffer, direction }
1747    }
1748}
1749
1750impl<B: GrowBuffer + ShrinkBuffer> Serializer for TruncatingSerializer<B> {
1751    type Buffer = B;
1752
1753    fn serialize<BB: GrowBufferMut, P: BufferProvider<B, BB>>(
1754        mut self,
1755        outer: PacketConstraints,
1756        provider: P,
1757    ) -> Result<BB, (SerializeError<P::Error>, Self)> {
1758        let original_len = self.buffer.len();
1759        let excess_bytes = if original_len > outer.max_body_len {
1760            Some(original_len - outer.max_body_len)
1761        } else {
1762            None
1763        };
1764        if let Some(excess_bytes) = excess_bytes {
1765            match self.direction {
1766                TruncateDirection::DiscardFront => self.buffer.shrink_front(excess_bytes),
1767                TruncateDirection::DiscardBack => self.buffer.shrink_back(excess_bytes),
1768                TruncateDirection::NoTruncating => {
1769                    return Err((SerializeError::SizeLimitExceeded, self))
1770                }
1771            }
1772        }
1773
1774        let padding = outer.min_body_len().saturating_sub(self.buffer.len());
1775
1776        // At this point, the body and padding MUST fit within the limit. Note
1777        // that PacketConstraints guarantees that min_body_len <= max_body_len,
1778        // so the padding can't cause this assertion to fail.
1779        debug_assert!(self.buffer.len() + padding <= outer.max_body_len());
1780        match provider.reuse_or_realloc(
1781            self.buffer,
1782            outer.header_len(),
1783            padding + outer.footer_len(),
1784        ) {
1785            Ok(buffer) => Ok(buffer),
1786            Err((err, mut buffer)) => {
1787                // Undo the effects of shrinking the buffer so that the buffer
1788                // we return is unmodified from its original (which is required
1789                // by the contract of this method).
1790                if let Some(excess_bytes) = excess_bytes {
1791                    match self.direction {
1792                        TruncateDirection::DiscardFront => buffer.grow_front(excess_bytes),
1793                        TruncateDirection::DiscardBack => buffer.grow_back(excess_bytes),
1794                        TruncateDirection::NoTruncating => unreachable!(),
1795                    }
1796                }
1797
1798                Err((
1799                    SerializeError::Alloc(err),
1800                    TruncatingSerializer { buffer, direction: self.direction },
1801                ))
1802            }
1803        }
1804    }
1805
1806    fn serialize_new_buf<BB: ReusableBuffer, A: BufferAlloc<BB>>(
1807        &self,
1808        outer: PacketConstraints,
1809        alloc: A,
1810    ) -> Result<BB, SerializeError<A::Error>> {
1811        let truncated_size = cmp::min(self.buffer.len(), outer.max_body_len());
1812        let discarded_bytes = self.buffer.len() - truncated_size;
1813        let padding = outer.min_body_len().saturating_sub(truncated_size);
1814        let tail_size = padding + outer.footer_len();
1815        let buffer_size = outer.header_len() + truncated_size + tail_size;
1816        let mut buffer = alloc.alloc(buffer_size)?;
1817        buffer.shrink_front(outer.header_len());
1818        buffer.shrink_back(tail_size);
1819        buffer.with_bytes_mut(|mut dst| {
1820            self.buffer.with_bytes(|src| {
1821                let src = match (discarded_bytes > 0, self.direction) {
1822                    (false, _) => src,
1823                    (true, TruncateDirection::DiscardFront) => src.slice(discarded_bytes..),
1824                    (true, TruncateDirection::DiscardBack) => src.slice(..truncated_size),
1825                    (true, TruncateDirection::NoTruncating) => {
1826                        return Err(SerializeError::SizeLimitExceeded)
1827                    }
1828                };
1829                dst.copy_from(&src);
1830                Ok(())
1831            })
1832        })?;
1833        buffer.grow_back_zero(padding);
1834        Ok(buffer)
1835    }
1836}
1837
1838impl<I: Serializer, O: PacketBuilder> Serializer for Nested<I, O> {
1839    type Buffer = I::Buffer;
1840
1841    #[inline]
1842    fn serialize<B: GrowBufferMut, P: BufferProvider<I::Buffer, B>>(
1843        self,
1844        outer: PacketConstraints,
1845        provider: P,
1846    ) -> Result<B, (SerializeError<P::Error>, Self)> {
1847        let Some(outer) = self.outer.constraints().try_encapsulate(&outer) else {
1848            return Err((SerializeError::SizeLimitExceeded, self));
1849        };
1850
1851        match self.inner.serialize(outer, provider) {
1852            Ok(mut buf) => {
1853                buf.serialize(&self.outer);
1854                Ok(buf)
1855            }
1856            Err((err, inner)) => Err((err, inner.encapsulate(self.outer))),
1857        }
1858    }
1859
1860    #[inline]
1861    fn serialize_new_buf<B: ReusableBuffer, A: BufferAlloc<B>>(
1862        &self,
1863        outer: PacketConstraints,
1864        alloc: A,
1865    ) -> Result<B, SerializeError<A::Error>> {
1866        let Some(outer) = self.outer.constraints().try_encapsulate(&outer) else {
1867            return Err(SerializeError::SizeLimitExceeded);
1868        };
1869
1870        let mut buf = self.inner.serialize_new_buf(outer, alloc)?;
1871        GrowBufferMut::serialize(&mut buf, &self.outer);
1872        Ok(buf)
1873    }
1874}
1875
1876#[cfg(test)]
1877mod tests {
1878    use super::*;
1879    use crate::BufferMut;
1880    use std::fmt::Debug;
1881    use test_case::test_case;
1882    use test_util::{assert_geq, assert_leq};
1883
1884    // DummyPacketBuilder:
1885    // - Implements PacketBuilder with the stored constraints; it fills the
1886    //   header with 0xFF and the footer with 0xFE
1887    // - Implements InnerPacketBuilder by consuming a `header_len`-bytes body,
1888    //   and filling it with 0xFF
1889    #[derive(Copy, Clone, Debug, Eq, PartialEq)]
1890    struct DummyPacketBuilder {
1891        header_len: usize,
1892        footer_len: usize,
1893        min_body_len: usize,
1894        max_body_len: usize,
1895    }
1896
1897    impl DummyPacketBuilder {
1898        fn new(
1899            header_len: usize,
1900            footer_len: usize,
1901            min_body_len: usize,
1902            max_body_len: usize,
1903        ) -> DummyPacketBuilder {
1904            DummyPacketBuilder { header_len, footer_len, min_body_len, max_body_len }
1905        }
1906    }
1907
1908    fn fill(bytes: &mut [u8], byte: u8) {
1909        for b in bytes {
1910            *b = byte;
1911        }
1912    }
1913
1914    impl PacketBuilder for DummyPacketBuilder {
1915        fn constraints(&self) -> PacketConstraints {
1916            PacketConstraints::new(
1917                self.header_len,
1918                self.footer_len,
1919                self.min_body_len,
1920                self.max_body_len,
1921            )
1922        }
1923
1924        fn serialize(&self, target: &mut SerializeTarget<'_>, body: FragmentedBytesMut<'_, '_>) {
1925            assert_eq!(target.header.len(), self.header_len);
1926            assert_eq!(target.footer.len(), self.footer_len);
1927            assert!(body.len() >= self.min_body_len);
1928            assert!(body.len() <= self.max_body_len);
1929            fill(target.header, 0xFF);
1930            fill(target.footer, 0xFE);
1931        }
1932    }
1933
1934    impl InnerPacketBuilder for DummyPacketBuilder {
1935        fn bytes_len(&self) -> usize {
1936            self.header_len
1937        }
1938
1939        fn serialize(&self, buffer: &mut [u8]) {
1940            assert_eq!(buffer.len(), self.header_len);
1941            fill(buffer, 0xFF);
1942        }
1943    }
1944
1945    // Helper for `VerifyingSerializer` used to verify the serialization result.
1946    #[derive(Copy, Clone, Debug, Eq, PartialEq)]
1947    struct SerializerVerifier {
1948        // Total size if the inner body if not truncated or `None` if
1949        // serialization is expected to fail due to size limit.
1950        inner_len: Option<usize>,
1951
1952        // Is the inner Serializer truncating (a TruncatingSerializer with
1953        // TruncateDirection::DiscardFront or DiscardBack)?
1954        truncating: bool,
1955    }
1956
1957    impl SerializerVerifier {
1958        fn new<S: Serializer>(serializer: &S, truncating: bool) -> Self {
1959            let inner_len = serializer
1960                .serialize_new_buf(PacketConstraints::UNCONSTRAINED, new_buf_vec)
1961                .map(|buf| buf.len())
1962                .inspect_err(|err| assert!(err.is_size_limit_exceeded()))
1963                .ok();
1964            Self { inner_len, truncating }
1965        }
1966
1967        fn verify_result<B: GrowBufferMut, A>(
1968            &self,
1969            result: Result<&B, &SerializeError<A>>,
1970            outer: PacketConstraints,
1971        ) {
1972            let should_exceed_size_limit = match self.inner_len {
1973                Some(inner_len) => outer.max_body_len() < inner_len && !self.truncating,
1974                None => true,
1975            };
1976
1977            match result {
1978                Ok(buf) => {
1979                    assert_geq!(buf.prefix_len(), outer.header_len());
1980                    assert_geq!(buf.suffix_len(), outer.footer_len());
1981                    assert_leq!(buf.len(), outer.max_body_len());
1982
1983                    // It is `Serialize::serialize()`'s responsibility to ensure that there
1984                    // is enough suffix room to fit any post-body padding and the footer,
1985                    // but it is the caller's responsibility to actually add that padding
1986                    // (ie, move it from the suffix to the body).
1987                    let padding = outer.min_body_len().saturating_sub(buf.len());
1988                    assert_leq!(padding + outer.footer_len(), buf.suffix_len());
1989
1990                    assert!(!should_exceed_size_limit);
1991                }
1992                Err(err) => {
1993                    // If we shouldn't fail as a result of a size limit exceeded
1994                    // error, we might still fail as a result of allocation.
1995                    if should_exceed_size_limit {
1996                        assert!(err.is_size_limit_exceeded());
1997                    } else {
1998                        assert!(err.is_alloc());
1999                    }
2000                }
2001            }
2002        }
2003    }
2004
2005    // A Serializer that verifies certain invariants while operating. In
2006    // particular:
2007    // - If serialization fails, the original Serializer is returned unmodified.
2008    // - If `outer.try_constraints()` returns `None`, serialization fails.
2009    // - If the size limit is exceeded and truncation is disabled, serialization
2010    //   fails.
2011    // - If serialization succeeds, the body has the correct length, including
2012    //   taking into account `outer`'s minimum body length requirement
2013    #[derive(Copy, Clone, Debug, Eq, PartialEq)]
2014    struct VerifyingSerializer<S> {
2015        ser: S,
2016        verifier: SerializerVerifier,
2017    }
2018
2019    impl<S: Serializer + Debug + Clone + Eq> Serializer for VerifyingSerializer<S>
2020    where
2021        S::Buffer: ReusableBuffer,
2022    {
2023        type Buffer = S::Buffer;
2024
2025        fn serialize<B: GrowBufferMut, P: BufferProvider<Self::Buffer, B>>(
2026            self,
2027            outer: PacketConstraints,
2028            provider: P,
2029        ) -> Result<B, (SerializeError<P::Error>, Self)> {
2030            let Self { ser, verifier } = self;
2031            let orig = ser.clone();
2032
2033            let result = ser.serialize(outer, provider).map_err(|(err, ser)| {
2034                // If serialization fails, the original Serializer should be
2035                // unmodified.
2036                assert_eq!(ser, orig);
2037                (err, Self { ser, verifier })
2038            });
2039
2040            verifier.verify_result(result.as_ref().map_err(|(err, _ser)| err), outer);
2041
2042            result
2043        }
2044
2045        fn serialize_new_buf<B: ReusableBuffer, A: BufferAlloc<B>>(
2046            &self,
2047            outer: PacketConstraints,
2048            alloc: A,
2049        ) -> Result<B, SerializeError<A::Error>> {
2050            let res = self.ser.serialize_new_buf(outer, alloc);
2051            self.verifier.verify_result(res.as_ref(), outer);
2052            res
2053        }
2054    }
2055
2056    trait SerializerExt: Serializer {
2057        fn into_verifying(self, truncating: bool) -> VerifyingSerializer<Self>
2058        where
2059            Self::Buffer: ReusableBuffer,
2060        {
2061            let verifier = SerializerVerifier::new(&self, truncating);
2062            VerifyingSerializer { ser: self, verifier }
2063        }
2064
2065        fn encapsulate_verifying<B: PacketBuilder>(
2066            self,
2067            outer: B,
2068            truncating: bool,
2069        ) -> VerifyingSerializer<Nested<Self, B>>
2070        where
2071            Self::Buffer: ReusableBuffer,
2072        {
2073            self.encapsulate(outer).into_verifying(truncating)
2074        }
2075
2076        fn with_size_limit_verifying(
2077            self,
2078            limit: usize,
2079            truncating: bool,
2080        ) -> VerifyingSerializer<Nested<Self, LimitedSizePacketBuilder>>
2081        where
2082            Self::Buffer: ReusableBuffer,
2083        {
2084            self.with_size_limit(limit).into_verifying(truncating)
2085        }
2086    }
2087
2088    impl<S: Serializer> SerializerExt for S {}
2089
2090    #[test]
2091    fn test_either_into_inner() {
2092        fn ret_either(a: u32, b: u32, c: bool) -> Either<u32, u32> {
2093            if c {
2094                Either::A(a)
2095            } else {
2096                Either::B(b)
2097            }
2098        }
2099
2100        assert_eq!(ret_either(1, 2, true).into_inner(), 1);
2101        assert_eq!(ret_either(1, 2, false).into_inner(), 2);
2102    }
2103
2104    #[test]
2105    fn test_either_unwrap_success() {
2106        assert_eq!(Either::<u16, u32>::A(5).unwrap_a(), 5);
2107        assert_eq!(Either::<u16, u32>::B(10).unwrap_b(), 10);
2108    }
2109
2110    #[test]
2111    #[should_panic]
2112    fn test_either_unwrap_a_panic() {
2113        let _: u16 = Either::<u16, u32>::B(10).unwrap_a();
2114    }
2115
2116    #[test]
2117    #[should_panic]
2118    fn test_either_unwrap_b_panic() {
2119        let _: u32 = Either::<u16, u32>::A(5).unwrap_b();
2120    }
2121
2122    #[test_case(Buf::new((0..100).collect(), ..); "entire buf")]
2123    #[test_case(Buf::new((0..100).collect(), 0..0); "empty range")]
2124    #[test_case(Buf::new((0..100).collect(), ..50); "prefix")]
2125    #[test_case(Buf::new((0..100).collect(), 50..); "suffix")]
2126    #[test_case(Buf::new((0..100).collect(), 25..75); "middle")]
2127    fn test_buf_into_inner(buf: Buf<Vec<u8>>) {
2128        assert_eq!(buf.clone().as_ref(), buf.into_inner());
2129    }
2130
2131    #[test]
2132    fn test_packet_constraints() {
2133        use PacketConstraints as PC;
2134
2135        // Test try_new
2136
2137        // Sanity check.
2138        assert!(PC::try_new(0, 0, 0, 0).is_some());
2139        // header_len + min_body_len + footer_len doesn't overflow usize
2140        assert!(PC::try_new(usize::MAX / 2, usize::MAX / 2, 0, 0).is_some());
2141        // header_len + min_body_len + footer_len overflows usize
2142        assert_eq!(PC::try_new(usize::MAX, 1, 0, 0), None);
2143        // min_body_len > max_body_len
2144        assert_eq!(PC::try_new(0, 0, 1, 0), None);
2145
2146        // Test PacketConstraints::try_encapsulate
2147
2148        // Sanity check.
2149        let pc = PC::new(10, 10, 0, usize::MAX);
2150        assert_eq!(pc.try_encapsulate(&pc).unwrap(), PC::new(20, 20, 0, usize::MAX - 20));
2151
2152        let pc = PC::new(10, 10, 0, usize::MAX);
2153        assert_eq!(pc.try_encapsulate(&pc).unwrap(), PC::new(20, 20, 0, usize::MAX - 20));
2154
2155        // Starting here, each failure test case corresponds to one check in
2156        // either PacketConstraints::try_encapsulate or PacketConstraints::new
2157        // (which is called from PacketConstraints::try_encapsulate). Each test
2158        // case is labeled "Test case N", and a corresponding comment in either
2159        // of those two functions identifies which line is being tested.
2160
2161        // The outer PC's minimum body length requirement of 10 is more than
2162        // satisfied by the inner PC's combined 20 bytes of header and footer.
2163        // The resulting PC has its minimum body length requirement saturated to
2164        // 0.
2165        let inner = PC::new(10, 10, 0, usize::MAX);
2166        let outer = PC::new(0, 0, 10, usize::MAX);
2167        assert_eq!(inner.try_encapsulate(&outer).unwrap(), PC::new(10, 10, 0, usize::MAX - 20));
2168
2169        // Test case 1
2170        //
2171        // The sum of the inner and outer header lengths overflows `usize`.
2172        let inner = PC::new(usize::MAX, 0, 0, usize::MAX);
2173        let outer = PC::new(1, 0, 0, usize::MAX);
2174        assert_eq!(inner.try_encapsulate(&outer), None);
2175
2176        // Test case 2
2177        //
2178        // The sum of the inner and outer footer lengths overflows `usize`.
2179        let inner = PC::new(0, usize::MAX, 0, usize::MAX);
2180        let outer = PC::new(0, 1, 0, usize::MAX);
2181        assert_eq!(inner.try_encapsulate(&outer), None);
2182
2183        // Test case 3
2184        //
2185        // The sum of the resulting header, footer, and minimum body lengths
2186        // overflows `usize`. We use usize::MAX / 5 + 1 as the constant so that
2187        // none of the intermediate additions overflow, so we make sure to test
2188        // that an overflow in the final addition will be caught.
2189        let one_fifth_max = (usize::MAX / 5) + 1;
2190        let inner = PC::new(one_fifth_max, one_fifth_max, one_fifth_max, usize::MAX);
2191        let outer = PC::new(one_fifth_max, one_fifth_max, 0, usize::MAX);
2192        assert_eq!(inner.try_encapsulate(&outer), None);
2193
2194        // Test case 4
2195        //
2196        // The header and footer of the inner PC exceed the maximum body length
2197        // requirement of the outer PC.
2198        let inner = PC::new(10, 10, 0, usize::MAX);
2199        let outer = PC::new(0, 0, 0, 10);
2200        assert_eq!(inner.try_encapsulate(&outer), None);
2201
2202        // Test case 5
2203        //
2204        // The resulting minimum body length (thanks to the inner
2205        // PacketBuilder's minimum body length) is larger than the resulting
2206        // maximum body length.
2207        let inner = PC::new(0, 0, 10, usize::MAX);
2208        let outer = PC::new(0, 0, 0, 5);
2209        assert_eq!(inner.try_encapsulate(&outer), None);
2210    }
2211
2212    #[test]
2213    fn test_inner_serializer() {
2214        const INNER: &[u8] = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
2215
2216        fn concat<'a, I: IntoIterator<Item = &'a &'a [u8]>>(slices: I) -> Vec<u8> {
2217            let mut v = Vec::new();
2218            for slc in slices.into_iter() {
2219                v.extend_from_slice(slc);
2220            }
2221            v
2222        }
2223
2224        // Sanity check.
2225        let buf = INNER.into_serializer().serialize_vec_outer().unwrap();
2226        assert_eq!(buf.as_ref(), INNER);
2227
2228        // A larger minimum body length requirement will cause padding to be
2229        // added.
2230        let buf = INNER
2231            .into_serializer()
2232            .into_verifying(false)
2233            .encapsulate(DummyPacketBuilder::new(0, 0, 20, usize::MAX))
2234            .serialize_vec_outer()
2235            .unwrap();
2236        assert_eq!(buf.as_ref(), concat(&[INNER, vec![0; 10].as_ref()]).as_slice());
2237
2238        // Headers and footers are added as appropriate (note that
2239        // DummyPacketBuilder fills its header with 0xFF and its footer with
2240        // 0xFE).
2241        let buf = INNER
2242            .into_serializer()
2243            .into_verifying(false)
2244            .encapsulate(DummyPacketBuilder::new(10, 10, 0, usize::MAX))
2245            .serialize_vec_outer()
2246            .unwrap();
2247        assert_eq!(
2248            buf.as_ref(),
2249            concat(&[vec![0xFF; 10].as_ref(), INNER, vec![0xFE; 10].as_ref()]).as_slice()
2250        );
2251
2252        // An exceeded maximum body size is rejected.
2253        assert_eq!(
2254            INNER
2255                .into_serializer()
2256                .into_verifying(false)
2257                .encapsulate(DummyPacketBuilder::new(0, 0, 0, 9))
2258                .serialize_vec_outer()
2259                .unwrap_err()
2260                .0,
2261            SerializeError::SizeLimitExceeded
2262        );
2263
2264        // `into_serializer_with` truncates the buffer's body to zero before
2265        // returning, so those body bytes are not included in the serialized
2266        // output.
2267        assert_eq!(
2268            INNER
2269                .into_serializer_with(Buf::new(vec![0xFF], ..))
2270                .into_verifying(false)
2271                .serialize_vec_outer()
2272                .unwrap()
2273                .as_ref(),
2274            INNER
2275        );
2276    }
2277
2278    #[test]
2279    fn test_buffer_serializer_and_inner_serializer() {
2280        fn verify_buffer_serializer<B: BufferMut + Debug>(
2281            buffer: B,
2282            header_len: usize,
2283            footer_len: usize,
2284            min_body_len: usize,
2285        ) {
2286            let old_body = buffer.to_flattened_vec();
2287            let serializer = buffer.encapsulate(DummyPacketBuilder::new(
2288                header_len,
2289                footer_len,
2290                min_body_len,
2291                usize::MAX,
2292            ));
2293
2294            let buffer0 = serializer
2295                .serialize_new_buf(PacketConstraints::UNCONSTRAINED, new_buf_vec)
2296                .unwrap();
2297            verify(buffer0, &old_body, header_len, footer_len, min_body_len);
2298
2299            let buffer = serializer.serialize_vec_outer().unwrap();
2300            verify(buffer, &old_body, header_len, footer_len, min_body_len);
2301        }
2302
2303        fn verify_inner_packet_builder_serializer(
2304            body: &[u8],
2305            header_len: usize,
2306            footer_len: usize,
2307            min_body_len: usize,
2308        ) {
2309            let buffer = body
2310                .into_serializer()
2311                .encapsulate(DummyPacketBuilder::new(
2312                    header_len,
2313                    footer_len,
2314                    min_body_len,
2315                    usize::MAX,
2316                ))
2317                .serialize_vec_outer()
2318                .unwrap();
2319            verify(buffer, body, header_len, footer_len, min_body_len);
2320        }
2321
2322        fn verify<B: Buffer>(
2323            buffer: B,
2324            body: &[u8],
2325            header_len: usize,
2326            footer_len: usize,
2327            min_body_len: usize,
2328        ) {
2329            let flat = buffer.to_flattened_vec();
2330            let header_bytes = &flat[..header_len];
2331            let body_bytes = &flat[header_len..header_len + body.len()];
2332            let padding_len = min_body_len.saturating_sub(body.len());
2333            let padding_bytes =
2334                &flat[header_len + body.len()..header_len + body.len() + padding_len];
2335            let total_body_len = body.len() + padding_len;
2336            let footer_bytes = &flat[header_len + total_body_len..];
2337            assert_eq!(
2338                buffer.len() - total_body_len,
2339                header_len + footer_len,
2340                "buffer.len()({}) - total_body_len({}) != header_len({}) + footer_len({})",
2341                buffer.len(),
2342                header_len,
2343                footer_len,
2344                min_body_len,
2345            );
2346
2347            // DummyPacketBuilder fills its header with 0xFF
2348            assert!(
2349                header_bytes.iter().all(|b| *b == 0xFF),
2350                "header_bytes {:?} are not filled with 0xFF's",
2351                header_bytes,
2352            );
2353            assert_eq!(body_bytes, body);
2354            // Padding bytes must be initialized to zero
2355            assert!(
2356                padding_bytes.iter().all(|b| *b == 0),
2357                "padding_bytes {:?} are not filled with 0s",
2358                padding_bytes,
2359            );
2360            // DummyPacketBuilder fills its footer with 0xFE
2361            assert!(
2362                footer_bytes.iter().all(|b| *b == 0xFE),
2363                "footer_bytes {:?} are not filled with 0xFE's",
2364                footer_bytes,
2365            );
2366        }
2367
2368        // Test for every valid combination of buf_len, range_start, range_end,
2369        // prefix, suffix, and min_body within [0, 8).
2370        for buf_len in 0..8 {
2371            for range_start in 0..buf_len {
2372                for range_end in range_start..buf_len {
2373                    for prefix in 0..8 {
2374                        for suffix in 0..8 {
2375                            for min_body in 0..8 {
2376                                let mut vec = vec![0; buf_len];
2377                                // Initialize the vector with values 0, 1, 2,
2378                                // ... so that we can check to make sure that
2379                                // the range bytes have been properly copied if
2380                                // the buffer is reallocated.
2381                                #[allow(clippy::needless_range_loop)]
2382                                for i in 0..vec.len() {
2383                                    vec[i] = i as u8;
2384                                }
2385                                verify_buffer_serializer(
2386                                    Buf::new(vec.as_mut_slice(), range_start..range_end),
2387                                    prefix,
2388                                    suffix,
2389                                    min_body,
2390                                );
2391                                if range_start == 0 {
2392                                    // Unlike verify_buffer_serializer, this
2393                                    // test doesn't make use of the prefix or
2394                                    // suffix. In order to avoid running the
2395                                    // exact same test multiple times, we only
2396                                    // run this when `range_start == 0`, which
2397                                    // has the effect of reducing the number of
2398                                    // times that this test is run by roughly a
2399                                    // factor of 8.
2400                                    verify_inner_packet_builder_serializer(
2401                                        &vec.as_slice()[range_start..range_end],
2402                                        prefix,
2403                                        suffix,
2404                                        min_body,
2405                                    );
2406                                }
2407                            }
2408                        }
2409                    }
2410                }
2411            }
2412        }
2413    }
2414
2415    #[test]
2416    fn test_min_body_len() {
2417        // Test that padding is added after the body of the packet whose minimum
2418        // body length constraint requires it. A previous version of this code
2419        // had a bug where padding was always added after the innermost body.
2420
2421        let body = &[1, 2];
2422
2423        // 4 bytes of header and footer for a total of 6 bytes (including the
2424        // body).
2425        let inner = DummyPacketBuilder::new(2, 2, 0, usize::MAX);
2426        // Minimum body length of 8 will require 2 bytes of padding.
2427        let outer = DummyPacketBuilder::new(2, 2, 8, usize::MAX);
2428        let buf = body
2429            .into_serializer()
2430            .into_verifying(false)
2431            .encapsulate_verifying(inner, false)
2432            .encapsulate_verifying(outer, false)
2433            .serialize_vec_outer()
2434            .unwrap();
2435        assert_eq!(buf.prefix_len(), 0);
2436        assert_eq!(buf.suffix_len(), 0);
2437        assert_eq!(
2438            buf.as_ref(),
2439            &[
2440                0xFF, 0xFF, // Outer header
2441                0xFF, 0xFF, // Inner header
2442                1, 2, // Inner body
2443                0xFE, 0xFE, // Inner footer
2444                0, 0, // Padding to satisfy outer minimum body length requirement
2445                0xFE, 0xFE // Outer footer
2446            ]
2447        );
2448    }
2449
2450    #[test]
2451    fn test_size_limit() {
2452        // ser is a Serializer that will consume 1 byte of buffer space
2453        fn test<S: Serializer + Clone + Debug + Eq>(ser: S)
2454        where
2455            S::Buffer: ReusableBuffer,
2456        {
2457            // Each of these tests encapsulates ser in a DummyPacketBuilder
2458            // which consumes 1 byte for the header and one byte for the footer.
2459            // Thus, the inner serializer will consume 1 byte, while the
2460            // DummyPacketBuilder will consume 2 bytes, for a total of 3 bytes.
2461
2462            let pb = DummyPacketBuilder::new(1, 1, 0, usize::MAX);
2463
2464            // Test that a size limit of 3 is OK. Note that this is an important
2465            // test since it tests the case when the size limit is exactly
2466            // sufficient. A previous version of this code had a bug where a
2467            // packet which fit the size limit exactly would be rejected.
2468            assert!(ser
2469                .clone()
2470                .encapsulate_verifying(pb, false)
2471                .with_size_limit_verifying(3, false)
2472                .serialize_vec_outer()
2473                .is_ok());
2474            // Test that a more-than-large-enough size limit of 4 is OK.
2475            assert!(ser
2476                .clone()
2477                .encapsulate_verifying(pb, false)
2478                .with_size_limit_verifying(4, false)
2479                .serialize_vec_outer()
2480                .is_ok());
2481            // Test that the inner size limit of 1 only applies to the inner
2482            // serializer, and so is still OK even though the outer serializer
2483            // consumes 3 bytes total.
2484            assert!(ser
2485                .clone()
2486                .with_size_limit_verifying(1, false)
2487                .encapsulate_verifying(pb, false)
2488                .with_size_limit_verifying(3, false)
2489                .serialize_vec_outer()
2490                .is_ok());
2491            // Test that the inner size limit of 0 is exceeded by the inner
2492            // serializer's 1 byte length.
2493            assert!(ser
2494                .clone()
2495                .with_size_limit_verifying(0, false)
2496                .encapsulate_verifying(pb, false)
2497                .serialize_vec_outer()
2498                .is_err());
2499            // Test that a size limit which would be exceeded by the
2500            // encapsulating layer is rejected by Nested's implementation. If
2501            // this doesn't work properly, then the size limit should underflow,
2502            // resulting in a panic (see the Nested implementation of
2503            // Serialize).
2504            assert!(ser
2505                .clone()
2506                .encapsulate_verifying(pb, false)
2507                .with_size_limit_verifying(1, false)
2508                .serialize_vec_outer()
2509                .is_err());
2510        }
2511
2512        // We use this as an InnerPacketBuilder which consumes 1 byte of body.
2513        test(DummyPacketBuilder::new(1, 0, 0, usize::MAX).into_serializer().into_verifying(false));
2514        test(Buf::new(vec![0], ..).into_verifying(false));
2515    }
2516
2517    #[test]
2518    fn test_truncating_serializer() {
2519        fn verify_result<S: Serializer + Debug>(ser: S, expected: &[u8])
2520        where
2521            S::Buffer: ReusableBuffer + AsRef<[u8]>,
2522        {
2523            let buf = ser.serialize_new_buf(PacketConstraints::UNCONSTRAINED, new_buf_vec).unwrap();
2524            assert_eq!(buf.as_ref(), &expected[..]);
2525            let buf = ser.serialize_vec_outer().unwrap();
2526            assert_eq!(buf.as_ref(), &expected[..]);
2527        }
2528
2529        // Test truncate front.
2530        let body = vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
2531        let ser =
2532            TruncatingSerializer::new(Buf::new(body.clone(), ..), TruncateDirection::DiscardFront)
2533                .into_verifying(true)
2534                .with_size_limit_verifying(4, true);
2535        verify_result(ser, &[6, 7, 8, 9]);
2536
2537        // Test truncate back.
2538        let ser =
2539            TruncatingSerializer::new(Buf::new(body.clone(), ..), TruncateDirection::DiscardBack)
2540                .into_verifying(true)
2541                .with_size_limit_verifying(7, true);
2542        verify_result(ser, &[0, 1, 2, 3, 4, 5, 6]);
2543
2544        // Test no truncating (default/original case).
2545        let ser =
2546            TruncatingSerializer::new(Buf::new(body.clone(), ..), TruncateDirection::NoTruncating)
2547                .into_verifying(false)
2548                .with_size_limit_verifying(5, true);
2549        assert!(ser.clone().serialize_vec_outer().is_err());
2550        assert!(ser.serialize_new_buf(PacketConstraints::UNCONSTRAINED, new_buf_vec).is_err());
2551        assert!(ser.serialize_vec_outer().is_err());
2552
2553        // Test that, when serialization fails, any truncation is undone.
2554
2555        // `ser` has a body of `[1, 2]` and no prefix or suffix
2556        fn test_serialization_failure<S: Serializer + Clone + Eq + Debug>(
2557            ser: S,
2558            err: SerializeError<BufferTooShortError>,
2559        ) where
2560            S::Buffer: ReusableBuffer + Debug,
2561        {
2562            // Serialize with a PacketBuilder with a size limit of 1 so that the
2563            // body (of length 2) is too large. If `ser` is configured not to
2564            // truncate, it should result in a size limit error. If it is
2565            // configured to truncate, the 2 + 2 = 4 combined bytes of header
2566            // and footer will cause allocating a new buffer to fail, and it
2567            // should result in an allocation failure. Even if the body was
2568            // truncated, it should be returned to its original un-truncated
2569            // state before being returned from `serialize`.
2570            let (e, new_ser) = ser
2571                .clone()
2572                .encapsulate(DummyPacketBuilder::new(2, 2, 0, 1))
2573                .serialize_no_alloc_outer()
2574                .unwrap_err();
2575            assert_eq!(err, e);
2576            assert_eq!(new_ser.into_inner(), ser);
2577        }
2578
2579        let body = Buf::new(vec![1, 2], ..);
2580        test_serialization_failure(
2581            TruncatingSerializer::new(body.clone(), TruncateDirection::DiscardFront)
2582                .into_verifying(true),
2583            SerializeError::Alloc(BufferTooShortError),
2584        );
2585        test_serialization_failure(
2586            TruncatingSerializer::new(body.clone(), TruncateDirection::DiscardFront)
2587                .into_verifying(true),
2588            SerializeError::Alloc(BufferTooShortError),
2589        );
2590        test_serialization_failure(
2591            TruncatingSerializer::new(body.clone(), TruncateDirection::NoTruncating)
2592                .into_verifying(false),
2593            SerializeError::SizeLimitExceeded,
2594        );
2595    }
2596
2597    #[test]
2598    fn test_try_reuse_buffer() {
2599        fn test_expect_success(
2600            body_range: Range<usize>,
2601            prefix: usize,
2602            suffix: usize,
2603            max_copy_bytes: usize,
2604        ) {
2605            let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
2606            let buffer = Buf::new(&mut bytes[..], body_range);
2607            let body = buffer.as_ref().to_vec();
2608            let buffer = try_reuse_buffer(buffer, prefix, suffix, max_copy_bytes).unwrap();
2609            assert_eq!(buffer.as_ref(), body.as_slice());
2610            assert!(buffer.prefix_len() >= prefix);
2611            assert!(buffer.suffix_len() >= suffix);
2612        }
2613
2614        fn test_expect_failure(
2615            body_range: Range<usize>,
2616            prefix: usize,
2617            suffix: usize,
2618            max_copy_bytes: usize,
2619        ) {
2620            let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
2621            let buffer = Buf::new(&mut bytes[..], body_range.clone());
2622            let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
2623            let orig = Buf::new(&mut bytes[..], body_range.clone());
2624            let buffer = try_reuse_buffer(buffer, prefix, suffix, max_copy_bytes).unwrap_err();
2625            assert_eq!(buffer, orig);
2626        }
2627
2628        // No prefix or suffix trivially succeeds.
2629        test_expect_success(0..10, 0, 0, 0);
2630        // If we have enough prefix/suffix, it succeeds.
2631        test_expect_success(1..9, 1, 1, 0);
2632        // If we don't have enough prefix/suffix, but we have enough capacity to
2633        // move the buffer within the body, it succeeds...
2634        test_expect_success(0..9, 1, 0, 9);
2635        test_expect_success(1..10, 0, 1, 9);
2636        // ...but if we don't provide a large enough max_copy_bytes, it will fail.
2637        test_expect_failure(0..9, 1, 0, 8);
2638        test_expect_failure(1..10, 0, 1, 8);
2639    }
2640
2641    #[test]
2642    fn test_maybe_reuse_buffer_provider() {
2643        fn test_expect(body_range: Range<usize>, prefix: usize, suffix: usize, expect_a: bool) {
2644            let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
2645            let buffer = Buf::new(&mut bytes[..], body_range);
2646            let body = buffer.as_ref().to_vec();
2647            let buffer = BufferProvider::reuse_or_realloc(
2648                MaybeReuseBufferProvider(new_buf_vec),
2649                buffer,
2650                prefix,
2651                suffix,
2652            )
2653            .unwrap();
2654            match &buffer {
2655                Either::A(_) if expect_a => {}
2656                Either::B(_) if !expect_a => {}
2657                Either::A(_) => panic!("expected Eitehr::B variant"),
2658                Either::B(_) => panic!("expected Eitehr::A variant"),
2659            }
2660            let bytes: &[u8] = buffer.as_ref();
2661            assert_eq!(bytes, body.as_slice());
2662            assert!(buffer.prefix_len() >= prefix);
2663            assert!(buffer.suffix_len() >= suffix);
2664        }
2665
2666        // Expect that we'll be able to reuse the existing buffer.
2667        fn test_expect_reuse(body_range: Range<usize>, prefix: usize, suffix: usize) {
2668            test_expect(body_range, prefix, suffix, true);
2669        }
2670
2671        // Expect that we'll need to allocate a new buffer.
2672        fn test_expect_realloc(body_range: Range<usize>, prefix: usize, suffix: usize) {
2673            test_expect(body_range, prefix, suffix, false);
2674        }
2675
2676        // No prefix or suffix trivially succeeds.
2677        test_expect_reuse(0..10, 0, 0);
2678        // If we have enough prefix/suffix, it succeeds.
2679        test_expect_reuse(1..9, 1, 1);
2680        // If we don't have enough prefix/suffix, but we have enough capacity to
2681        // move the buffer within the body, it succeeds.
2682        test_expect_reuse(0..9, 1, 0);
2683        test_expect_reuse(1..10, 0, 1);
2684        // If we don't have enough capacity, it fails and must realloc.
2685        test_expect_realloc(0..9, 1, 1);
2686        test_expect_realloc(1..10, 1, 1);
2687    }
2688
2689    #[test]
2690    fn test_no_reuse_buffer_provider() {
2691        #[track_caller]
2692        fn test_expect(body_range: Range<usize>, prefix: usize, suffix: usize) {
2693            let mut bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];
2694            // The buffer that will not be reused.
2695            let internal_buffer: Buf<&mut [u8]> = Buf::new(&mut bytes[..], body_range);
2696            let body = internal_buffer.as_ref().to_vec();
2697            // The newly allocated buffer, note the type is different from
2698            // internal_buffer.
2699            let buffer: Buf<Vec<u8>> = BufferProvider::reuse_or_realloc(
2700                NoReuseBufferProvider(new_buf_vec),
2701                internal_buffer,
2702                prefix,
2703                suffix,
2704            )
2705            .unwrap();
2706            let bytes: &[u8] = buffer.as_ref();
2707            assert_eq!(bytes, body.as_slice());
2708            assert_eq!(buffer.prefix_len(), prefix);
2709            assert_eq!(buffer.suffix_len(), suffix);
2710        }
2711        // No prefix or suffix trivially succeeds, reuse opportunity is ignored.
2712        test_expect(0..10, 0, 0);
2713        // If we have enough prefix/suffix, reuse opportunity is ignored.
2714        test_expect(1..9, 1, 1);
2715        // Prefix and suffix and properly allocated and the body is copied.
2716        test_expect(0..9, 10, 10);
2717        test_expect(1..10, 15, 15);
2718    }
2719
2720    /// Simple Vec-backed buffer to test fragmented buffers implementation.
2721    ///
2722    /// `ScatterGatherBuf` keeps:
2723    /// - an inner buffer `inner`, which is always part of its body.
2724    /// - extra backing memory in `data`.
2725    ///
2726    /// `data` has two "root" regions, marked by the midpoint `mid`. Everything
2727    /// left of `mid` is this buffer's prefix, and after `mid` is this buffer's
2728    /// suffix.
2729    ///
2730    /// The `range` field keeps the range in `data` that contains *filled*
2731    /// prefix and suffix information. `range.start` is always less than or
2732    /// equal to `mid` and `range.end` is always greater than or equal to `mid`,
2733    /// such that growing the front of the buffer means decrementing
2734    /// `range.start` and growing the back of the buffer means incrementing
2735    /// `range.end`.
2736    ///
2737    ///  At any time this buffer's parts are:
2738    /// - Free prefix data in range `0..range.start`.
2739    /// - Used prefix data (now part of body) in range `range.start..mid`.
2740    /// - Inner buffer body in `inner`.
2741    /// - Used suffix data (now part of body) in range `mid..range.end`.
2742    /// - Free suffix data in range `range.end..`
2743    struct ScatterGatherBuf<B> {
2744        data: Vec<u8>,
2745        mid: usize,
2746        range: Range<usize>,
2747        inner: B,
2748    }
2749
2750    impl<B: BufferMut> FragmentedBuffer for ScatterGatherBuf<B> {
2751        fn len(&self) -> usize {
2752            self.inner.len() + (self.range.end - self.range.start)
2753        }
2754
2755        fn with_bytes<R, F>(&self, f: F) -> R
2756        where
2757            F: for<'a, 'b> FnOnce(FragmentedBytes<'a, 'b>) -> R,
2758        {
2759            let (_, rest) = self.data.split_at(self.range.start);
2760            let (prefix_b, rest) = rest.split_at(self.mid - self.range.start);
2761            let (suffix_b, _) = rest.split_at(self.range.end - self.mid);
2762            let mut bytes = [prefix_b, self.inner.as_ref(), suffix_b];
2763            f(FragmentedBytes::new(&mut bytes[..]))
2764        }
2765    }
2766
2767    impl<B: BufferMut> FragmentedBufferMut for ScatterGatherBuf<B> {
2768        fn with_bytes_mut<R, F>(&mut self, f: F) -> R
2769        where
2770            F: for<'a, 'b> FnOnce(FragmentedBytesMut<'a, 'b>) -> R,
2771        {
2772            let (_, rest) = self.data.split_at_mut(self.range.start);
2773            let (prefix_b, rest) = rest.split_at_mut(self.mid - self.range.start);
2774            let (suffix_b, _) = rest.split_at_mut(self.range.end - self.mid);
2775            let mut bytes = [prefix_b, self.inner.as_mut(), suffix_b];
2776            f(FragmentedBytesMut::new(&mut bytes[..]))
2777        }
2778    }
2779
2780    impl<B: BufferMut> GrowBuffer for ScatterGatherBuf<B> {
2781        fn with_parts<O, F>(&self, f: F) -> O
2782        where
2783            F: for<'a, 'b> FnOnce(&'a [u8], FragmentedBytes<'a, 'b>, &'a [u8]) -> O,
2784        {
2785            let (prefix, rest) = self.data.split_at(self.range.start);
2786            let (prefix_b, rest) = rest.split_at(self.mid - self.range.start);
2787            let (suffix_b, suffix) = rest.split_at(self.range.end - self.mid);
2788            let mut bytes = [prefix_b, self.inner.as_ref(), suffix_b];
2789            f(prefix, bytes.as_fragmented_byte_slice(), suffix)
2790        }
2791        fn prefix_len(&self) -> usize {
2792            self.range.start
2793        }
2794
2795        fn suffix_len(&self) -> usize {
2796            self.data.len() - self.range.end
2797        }
2798
2799        fn grow_front(&mut self, n: usize) {
2800            self.range.start -= n;
2801        }
2802
2803        fn grow_back(&mut self, n: usize) {
2804            self.range.end += n;
2805            assert!(self.range.end <= self.data.len());
2806        }
2807    }
2808
2809    impl<B: BufferMut> GrowBufferMut for ScatterGatherBuf<B> {
2810        fn with_parts_mut<O, F>(&mut self, f: F) -> O
2811        where
2812            F: for<'a, 'b> FnOnce(&'a mut [u8], FragmentedBytesMut<'a, 'b>, &'a mut [u8]) -> O,
2813        {
2814            let (prefix, rest) = self.data.split_at_mut(self.range.start);
2815            let (prefix_b, rest) = rest.split_at_mut(self.mid - self.range.start);
2816            let (suffix_b, suffix) = rest.split_at_mut(self.range.end - self.mid);
2817            let mut bytes = [prefix_b, self.inner.as_mut(), suffix_b];
2818            f(prefix, bytes.as_fragmented_byte_slice(), suffix)
2819        }
2820    }
2821
2822    struct ScatterGatherProvider;
2823
2824    impl<B: BufferMut> BufferProvider<B, ScatterGatherBuf<B>> for ScatterGatherProvider {
2825        type Error = Never;
2826
2827        fn alloc_no_reuse(
2828            self,
2829            _prefix: usize,
2830            _body: usize,
2831            _suffix: usize,
2832        ) -> Result<ScatterGatherBuf<B>, Self::Error> {
2833            unimplemented!("not used in tests")
2834        }
2835
2836        fn reuse_or_realloc(
2837            self,
2838            buffer: B,
2839            prefix: usize,
2840            suffix: usize,
2841        ) -> Result<ScatterGatherBuf<B>, (Self::Error, B)> {
2842            let inner = buffer;
2843            let data = vec![0; prefix + suffix];
2844            let range = Range { start: prefix, end: prefix };
2845            let mid = prefix;
2846            Ok(ScatterGatherBuf { inner, data, range, mid })
2847        }
2848    }
2849
2850    #[test]
2851    fn test_scatter_gather_serialize() {
2852        // Assert that a buffer composed of different allocations can be used as
2853        // a serialization target, while reusing an internal body buffer.
2854        let buf = Buf::new(vec![10, 20, 30, 40, 50], ..);
2855        let pb = DummyPacketBuilder::new(3, 2, 0, usize::MAX);
2856        let ser = buf.encapsulate(pb);
2857        let result = ser.serialize_outer(ScatterGatherProvider {}).unwrap();
2858        let flattened = result.to_flattened_vec();
2859        assert_eq!(&flattened[..], &[0xFF, 0xFF, 0xFF, 10, 20, 30, 40, 50, 0xFE, 0xFE]);
2860    }
2861}