num_integer/
lib.rs

1// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
2// file at the top-level directory of this distribution and at
3// http://rust-lang.org/COPYRIGHT.
4//
5// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
6// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
7// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
8// option. This file may not be copied, modified, or distributed
9// except according to those terms.
10
11//! Integer trait and functions.
12//!
13//! ## Compatibility
14//!
15//! The `num-integer` crate is tested for rustc 1.8 and greater.
16
17#![doc(html_root_url = "https://docs.rs/num-integer/0.1")]
18#![no_std]
19#[cfg(feature = "std")]
20extern crate std;
21
22extern crate num_traits as traits;
23
24use core::mem;
25use core::ops::Add;
26
27use traits::{Num, Signed, Zero};
28
29mod roots;
30pub use roots::Roots;
31pub use roots::{cbrt, nth_root, sqrt};
32
33mod average;
34pub use average::Average;
35pub use average::{average_ceil, average_floor};
36
37pub trait Integer: Sized + Num + PartialOrd + Ord + Eq {
38    /// Floored integer division.
39    ///
40    /// # Examples
41    ///
42    /// ~~~
43    /// # use num_integer::Integer;
44    /// assert!(( 8).div_floor(& 3) ==  2);
45    /// assert!(( 8).div_floor(&-3) == -3);
46    /// assert!((-8).div_floor(& 3) == -3);
47    /// assert!((-8).div_floor(&-3) ==  2);
48    ///
49    /// assert!(( 1).div_floor(& 2) ==  0);
50    /// assert!(( 1).div_floor(&-2) == -1);
51    /// assert!((-1).div_floor(& 2) == -1);
52    /// assert!((-1).div_floor(&-2) ==  0);
53    /// ~~~
54    fn div_floor(&self, other: &Self) -> Self;
55
56    /// Floored integer modulo, satisfying:
57    ///
58    /// ~~~
59    /// # use num_integer::Integer;
60    /// # let n = 1; let d = 1;
61    /// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n)
62    /// ~~~
63    ///
64    /// # Examples
65    ///
66    /// ~~~
67    /// # use num_integer::Integer;
68    /// assert!(( 8).mod_floor(& 3) ==  2);
69    /// assert!(( 8).mod_floor(&-3) == -1);
70    /// assert!((-8).mod_floor(& 3) ==  1);
71    /// assert!((-8).mod_floor(&-3) == -2);
72    ///
73    /// assert!(( 1).mod_floor(& 2) ==  1);
74    /// assert!(( 1).mod_floor(&-2) == -1);
75    /// assert!((-1).mod_floor(& 2) ==  1);
76    /// assert!((-1).mod_floor(&-2) == -1);
77    /// ~~~
78    fn mod_floor(&self, other: &Self) -> Self;
79
80    /// Ceiled integer division.
81    ///
82    /// # Examples
83    ///
84    /// ~~~
85    /// # use num_integer::Integer;
86    /// assert_eq!(( 8).div_ceil( &3),  3);
87    /// assert_eq!(( 8).div_ceil(&-3), -2);
88    /// assert_eq!((-8).div_ceil( &3), -2);
89    /// assert_eq!((-8).div_ceil(&-3),  3);
90    ///
91    /// assert_eq!(( 1).div_ceil( &2), 1);
92    /// assert_eq!(( 1).div_ceil(&-2), 0);
93    /// assert_eq!((-1).div_ceil( &2), 0);
94    /// assert_eq!((-1).div_ceil(&-2), 1);
95    /// ~~~
96    fn div_ceil(&self, other: &Self) -> Self {
97        let (q, r) = self.div_mod_floor(other);
98        if r.is_zero() {
99            q
100        } else {
101            q + Self::one()
102        }
103    }
104
105    /// Greatest Common Divisor (GCD).
106    ///
107    /// # Examples
108    ///
109    /// ~~~
110    /// # use num_integer::Integer;
111    /// assert_eq!(6.gcd(&8), 2);
112    /// assert_eq!(7.gcd(&3), 1);
113    /// ~~~
114    fn gcd(&self, other: &Self) -> Self;
115
116    /// Lowest Common Multiple (LCM).
117    ///
118    /// # Examples
119    ///
120    /// ~~~
121    /// # use num_integer::Integer;
122    /// assert_eq!(7.lcm(&3), 21);
123    /// assert_eq!(2.lcm(&4), 4);
124    /// assert_eq!(0.lcm(&0), 0);
125    /// ~~~
126    fn lcm(&self, other: &Self) -> Self;
127
128    /// Greatest Common Divisor (GCD) and
129    /// Lowest Common Multiple (LCM) together.
130    ///
131    /// Potentially more efficient than calling `gcd` and `lcm`
132    /// individually for identical inputs.
133    ///
134    /// # Examples
135    ///
136    /// ~~~
137    /// # use num_integer::Integer;
138    /// assert_eq!(10.gcd_lcm(&4), (2, 20));
139    /// assert_eq!(8.gcd_lcm(&9), (1, 72));
140    /// ~~~
141    #[inline]
142    fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
143        (self.gcd(other), self.lcm(other))
144    }
145
146    /// Greatest common divisor and Bézout coefficients.
147    ///
148    /// # Examples
149    ///
150    /// ~~~
151    /// # extern crate num_integer;
152    /// # extern crate num_traits;
153    /// # fn main() {
154    /// # use num_integer::{ExtendedGcd, Integer};
155    /// # use num_traits::NumAssign;
156    /// fn check<A: Copy + Integer + NumAssign>(a: A, b: A) -> bool {
157    ///     let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b);
158    ///     gcd == x * a + y * b
159    /// }
160    /// assert!(check(10isize, 4isize));
161    /// assert!(check(8isize,  9isize));
162    /// # }
163    /// ~~~
164    #[inline]
165    fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
166    where
167        Self: Clone,
168    {
169        let mut s = (Self::zero(), Self::one());
170        let mut t = (Self::one(), Self::zero());
171        let mut r = (other.clone(), self.clone());
172
173        while !r.0.is_zero() {
174            let q = r.1.clone() / r.0.clone();
175            let f = |mut r: (Self, Self)| {
176                mem::swap(&mut r.0, &mut r.1);
177                r.0 = r.0 - q.clone() * r.1.clone();
178                r
179            };
180            r = f(r);
181            s = f(s);
182            t = f(t);
183        }
184
185        if r.1 >= Self::zero() {
186            ExtendedGcd {
187                gcd: r.1,
188                x: s.1,
189                y: t.1,
190                _hidden: (),
191            }
192        } else {
193            ExtendedGcd {
194                gcd: Self::zero() - r.1,
195                x: Self::zero() - s.1,
196                y: Self::zero() - t.1,
197                _hidden: (),
198            }
199        }
200    }
201
202    /// Greatest common divisor, least common multiple, and Bézout coefficients.
203    #[inline]
204    fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self)
205    where
206        Self: Clone + Signed,
207    {
208        (self.extended_gcd(other), self.lcm(other))
209    }
210
211    /// Deprecated, use `is_multiple_of` instead.
212    fn divides(&self, other: &Self) -> bool;
213
214    /// Returns `true` if `self` is a multiple of `other`.
215    ///
216    /// # Examples
217    ///
218    /// ~~~
219    /// # use num_integer::Integer;
220    /// assert_eq!(9.is_multiple_of(&3), true);
221    /// assert_eq!(3.is_multiple_of(&9), false);
222    /// ~~~
223    fn is_multiple_of(&self, other: &Self) -> bool;
224
225    /// Returns `true` if the number is even.
226    ///
227    /// # Examples
228    ///
229    /// ~~~
230    /// # use num_integer::Integer;
231    /// assert_eq!(3.is_even(), false);
232    /// assert_eq!(4.is_even(), true);
233    /// ~~~
234    fn is_even(&self) -> bool;
235
236    /// Returns `true` if the number is odd.
237    ///
238    /// # Examples
239    ///
240    /// ~~~
241    /// # use num_integer::Integer;
242    /// assert_eq!(3.is_odd(), true);
243    /// assert_eq!(4.is_odd(), false);
244    /// ~~~
245    fn is_odd(&self) -> bool;
246
247    /// Simultaneous truncated integer division and modulus.
248    /// Returns `(quotient, remainder)`.
249    ///
250    /// # Examples
251    ///
252    /// ~~~
253    /// # use num_integer::Integer;
254    /// assert_eq!(( 8).div_rem( &3), ( 2,  2));
255    /// assert_eq!(( 8).div_rem(&-3), (-2,  2));
256    /// assert_eq!((-8).div_rem( &3), (-2, -2));
257    /// assert_eq!((-8).div_rem(&-3), ( 2, -2));
258    ///
259    /// assert_eq!(( 1).div_rem( &2), ( 0,  1));
260    /// assert_eq!(( 1).div_rem(&-2), ( 0,  1));
261    /// assert_eq!((-1).div_rem( &2), ( 0, -1));
262    /// assert_eq!((-1).div_rem(&-2), ( 0, -1));
263    /// ~~~
264    fn div_rem(&self, other: &Self) -> (Self, Self);
265
266    /// Simultaneous floored integer division and modulus.
267    /// Returns `(quotient, remainder)`.
268    ///
269    /// # Examples
270    ///
271    /// ~~~
272    /// # use num_integer::Integer;
273    /// assert_eq!(( 8).div_mod_floor( &3), ( 2,  2));
274    /// assert_eq!(( 8).div_mod_floor(&-3), (-3, -1));
275    /// assert_eq!((-8).div_mod_floor( &3), (-3,  1));
276    /// assert_eq!((-8).div_mod_floor(&-3), ( 2, -2));
277    ///
278    /// assert_eq!(( 1).div_mod_floor( &2), ( 0,  1));
279    /// assert_eq!(( 1).div_mod_floor(&-2), (-1, -1));
280    /// assert_eq!((-1).div_mod_floor( &2), (-1,  1));
281    /// assert_eq!((-1).div_mod_floor(&-2), ( 0, -1));
282    /// ~~~
283    fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
284        (self.div_floor(other), self.mod_floor(other))
285    }
286
287    /// Rounds up to nearest multiple of argument.
288    ///
289    /// # Notes
290    ///
291    /// For signed types, `a.next_multiple_of(b) = a.prev_multiple_of(b.neg())`.
292    ///
293    /// # Examples
294    ///
295    /// ~~~
296    /// # use num_integer::Integer;
297    /// assert_eq!(( 16).next_multiple_of(& 8),  16);
298    /// assert_eq!(( 23).next_multiple_of(& 8),  24);
299    /// assert_eq!(( 16).next_multiple_of(&-8),  16);
300    /// assert_eq!(( 23).next_multiple_of(&-8),  16);
301    /// assert_eq!((-16).next_multiple_of(& 8), -16);
302    /// assert_eq!((-23).next_multiple_of(& 8), -16);
303    /// assert_eq!((-16).next_multiple_of(&-8), -16);
304    /// assert_eq!((-23).next_multiple_of(&-8), -24);
305    /// ~~~
306    #[inline]
307    fn next_multiple_of(&self, other: &Self) -> Self
308    where
309        Self: Clone,
310    {
311        let m = self.mod_floor(other);
312        self.clone()
313            + if m.is_zero() {
314                Self::zero()
315            } else {
316                other.clone() - m
317            }
318    }
319
320    /// Rounds down to nearest multiple of argument.
321    ///
322    /// # Notes
323    ///
324    /// For signed types, `a.prev_multiple_of(b) = a.next_multiple_of(b.neg())`.
325    ///
326    /// # Examples
327    ///
328    /// ~~~
329    /// # use num_integer::Integer;
330    /// assert_eq!(( 16).prev_multiple_of(& 8),  16);
331    /// assert_eq!(( 23).prev_multiple_of(& 8),  16);
332    /// assert_eq!(( 16).prev_multiple_of(&-8),  16);
333    /// assert_eq!(( 23).prev_multiple_of(&-8),  24);
334    /// assert_eq!((-16).prev_multiple_of(& 8), -16);
335    /// assert_eq!((-23).prev_multiple_of(& 8), -24);
336    /// assert_eq!((-16).prev_multiple_of(&-8), -16);
337    /// assert_eq!((-23).prev_multiple_of(&-8), -16);
338    /// ~~~
339    #[inline]
340    fn prev_multiple_of(&self, other: &Self) -> Self
341    where
342        Self: Clone,
343    {
344        self.clone() - self.mod_floor(other)
345    }
346}
347
348/// Greatest common divisor and Bézout coefficients
349///
350/// ```no_build
351/// let e = isize::extended_gcd(a, b);
352/// assert_eq!(e.gcd, e.x*a + e.y*b);
353/// ```
354#[derive(Debug, Clone, Copy, PartialEq, Eq)]
355pub struct ExtendedGcd<A> {
356    pub gcd: A,
357    pub x: A,
358    pub y: A,
359    _hidden: (),
360}
361
362/// Simultaneous integer division and modulus
363#[inline]
364pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) {
365    x.div_rem(&y)
366}
367/// Floored integer division
368#[inline]
369pub fn div_floor<T: Integer>(x: T, y: T) -> T {
370    x.div_floor(&y)
371}
372/// Floored integer modulus
373#[inline]
374pub fn mod_floor<T: Integer>(x: T, y: T) -> T {
375    x.mod_floor(&y)
376}
377/// Simultaneous floored integer division and modulus
378#[inline]
379pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) {
380    x.div_mod_floor(&y)
381}
382/// Ceiled integer division
383#[inline]
384pub fn div_ceil<T: Integer>(x: T, y: T) -> T {
385    x.div_ceil(&y)
386}
387
388/// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The
389/// result is always positive.
390#[inline(always)]
391pub fn gcd<T: Integer>(x: T, y: T) -> T {
392    x.gcd(&y)
393}
394/// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
395#[inline(always)]
396pub fn lcm<T: Integer>(x: T, y: T) -> T {
397    x.lcm(&y)
398}
399
400/// Calculates the Greatest Common Divisor (GCD) and
401/// Lowest Common Multiple (LCM) of the number and `other`.
402#[inline(always)]
403pub fn gcd_lcm<T: Integer>(x: T, y: T) -> (T, T) {
404    x.gcd_lcm(&y)
405}
406
407macro_rules! impl_integer_for_isize {
408    ($T:ty, $test_mod:ident) => {
409        impl Integer for $T {
410            /// Floored integer division
411            #[inline]
412            fn div_floor(&self, other: &Self) -> Self {
413                // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
414                // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
415                let (d, r) = self.div_rem(other);
416                if (r > 0 && *other < 0) || (r < 0 && *other > 0) {
417                    d - 1
418                } else {
419                    d
420                }
421            }
422
423            /// Floored integer modulo
424            #[inline]
425            fn mod_floor(&self, other: &Self) -> Self {
426                // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
427                // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
428                let r = *self % *other;
429                if (r > 0 && *other < 0) || (r < 0 && *other > 0) {
430                    r + *other
431                } else {
432                    r
433                }
434            }
435
436            /// Calculates `div_floor` and `mod_floor` simultaneously
437            #[inline]
438            fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
439                // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_,
440                // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf)
441                let (d, r) = self.div_rem(other);
442                if (r > 0 && *other < 0) || (r < 0 && *other > 0) {
443                    (d - 1, r + *other)
444                } else {
445                    (d, r)
446                }
447            }
448
449            #[inline]
450            fn div_ceil(&self, other: &Self) -> Self {
451                let (d, r) = self.div_rem(other);
452                if (r > 0 && *other > 0) || (r < 0 && *other < 0) {
453                    d + 1
454                } else {
455                    d
456                }
457            }
458
459            /// Calculates the Greatest Common Divisor (GCD) of the number and
460            /// `other`. The result is always positive.
461            #[inline]
462            fn gcd(&self, other: &Self) -> Self {
463                // Use Stein's algorithm
464                let mut m = *self;
465                let mut n = *other;
466                if m == 0 || n == 0 {
467                    return (m | n).abs();
468                }
469
470                // find common factors of 2
471                let shift = (m | n).trailing_zeros();
472
473                // The algorithm needs positive numbers, but the minimum value
474                // can't be represented as a positive one.
475                // It's also a power of two, so the gcd can be
476                // calculated by bitshifting in that case
477
478                // Assuming two's complement, the number created by the shift
479                // is positive for all numbers except gcd = abs(min value)
480                // The call to .abs() causes a panic in debug mode
481                if m == Self::min_value() || n == Self::min_value() {
482                    return (1 << shift).abs();
483                }
484
485                // guaranteed to be positive now, rest like unsigned algorithm
486                m = m.abs();
487                n = n.abs();
488
489                // divide n and m by 2 until odd
490                m >>= m.trailing_zeros();
491                n >>= n.trailing_zeros();
492
493                while m != n {
494                    if m > n {
495                        m -= n;
496                        m >>= m.trailing_zeros();
497                    } else {
498                        n -= m;
499                        n >>= n.trailing_zeros();
500                    }
501                }
502                m << shift
503            }
504
505            #[inline]
506            fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) {
507                let egcd = self.extended_gcd(other);
508                // should not have to recalculate abs
509                let lcm = if egcd.gcd.is_zero() {
510                    Self::zero()
511                } else {
512                    (*self * (*other / egcd.gcd)).abs()
513                };
514                (egcd, lcm)
515            }
516
517            /// Calculates the Lowest Common Multiple (LCM) of the number and
518            /// `other`.
519            #[inline]
520            fn lcm(&self, other: &Self) -> Self {
521                self.gcd_lcm(other).1
522            }
523
524            /// Calculates the Greatest Common Divisor (GCD) and
525            /// Lowest Common Multiple (LCM) of the number and `other`.
526            #[inline]
527            fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
528                if self.is_zero() && other.is_zero() {
529                    return (Self::zero(), Self::zero());
530                }
531                let gcd = self.gcd(other);
532                // should not have to recalculate abs
533                let lcm = (*self * (*other / gcd)).abs();
534                (gcd, lcm)
535            }
536
537            /// Deprecated, use `is_multiple_of` instead.
538            #[inline]
539            fn divides(&self, other: &Self) -> bool {
540                self.is_multiple_of(other)
541            }
542
543            /// Returns `true` if the number is a multiple of `other`.
544            #[inline]
545            fn is_multiple_of(&self, other: &Self) -> bool {
546                *self % *other == 0
547            }
548
549            /// Returns `true` if the number is divisible by `2`
550            #[inline]
551            fn is_even(&self) -> bool {
552                (*self) & 1 == 0
553            }
554
555            /// Returns `true` if the number is not divisible by `2`
556            #[inline]
557            fn is_odd(&self) -> bool {
558                !self.is_even()
559            }
560
561            /// Simultaneous truncated integer division and modulus.
562            #[inline]
563            fn div_rem(&self, other: &Self) -> (Self, Self) {
564                (*self / *other, *self % *other)
565            }
566        }
567
568        #[cfg(test)]
569        mod $test_mod {
570            use core::mem;
571            use Integer;
572
573            /// Checks that the division rule holds for:
574            ///
575            /// - `n`: numerator (dividend)
576            /// - `d`: denominator (divisor)
577            /// - `qr`: quotient and remainder
578            #[cfg(test)]
579            fn test_division_rule((n, d): ($T, $T), (q, r): ($T, $T)) {
580                assert_eq!(d * q + r, n);
581            }
582
583            #[test]
584            fn test_div_rem() {
585                fn test_nd_dr(nd: ($T, $T), qr: ($T, $T)) {
586                    let (n, d) = nd;
587                    let separate_div_rem = (n / d, n % d);
588                    let combined_div_rem = n.div_rem(&d);
589
590                    assert_eq!(separate_div_rem, qr);
591                    assert_eq!(combined_div_rem, qr);
592
593                    test_division_rule(nd, separate_div_rem);
594                    test_division_rule(nd, combined_div_rem);
595                }
596
597                test_nd_dr((8, 3), (2, 2));
598                test_nd_dr((8, -3), (-2, 2));
599                test_nd_dr((-8, 3), (-2, -2));
600                test_nd_dr((-8, -3), (2, -2));
601
602                test_nd_dr((1, 2), (0, 1));
603                test_nd_dr((1, -2), (0, 1));
604                test_nd_dr((-1, 2), (0, -1));
605                test_nd_dr((-1, -2), (0, -1));
606            }
607
608            #[test]
609            fn test_div_mod_floor() {
610                fn test_nd_dm(nd: ($T, $T), dm: ($T, $T)) {
611                    let (n, d) = nd;
612                    let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
613                    let combined_div_mod_floor = n.div_mod_floor(&d);
614
615                    assert_eq!(separate_div_mod_floor, dm);
616                    assert_eq!(combined_div_mod_floor, dm);
617
618                    test_division_rule(nd, separate_div_mod_floor);
619                    test_division_rule(nd, combined_div_mod_floor);
620                }
621
622                test_nd_dm((8, 3), (2, 2));
623                test_nd_dm((8, -3), (-3, -1));
624                test_nd_dm((-8, 3), (-3, 1));
625                test_nd_dm((-8, -3), (2, -2));
626
627                test_nd_dm((1, 2), (0, 1));
628                test_nd_dm((1, -2), (-1, -1));
629                test_nd_dm((-1, 2), (-1, 1));
630                test_nd_dm((-1, -2), (0, -1));
631            }
632
633            #[test]
634            fn test_gcd() {
635                assert_eq!((10 as $T).gcd(&2), 2 as $T);
636                assert_eq!((10 as $T).gcd(&3), 1 as $T);
637                assert_eq!((0 as $T).gcd(&3), 3 as $T);
638                assert_eq!((3 as $T).gcd(&3), 3 as $T);
639                assert_eq!((56 as $T).gcd(&42), 14 as $T);
640                assert_eq!((3 as $T).gcd(&-3), 3 as $T);
641                assert_eq!((-6 as $T).gcd(&3), 3 as $T);
642                assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
643            }
644
645            #[test]
646            fn test_gcd_cmp_with_euclidean() {
647                fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
648                    while m != 0 {
649                        mem::swap(&mut m, &mut n);
650                        m %= n;
651                    }
652
653                    n.abs()
654                }
655
656                // gcd(-128, b) = 128 is not representable as positive value
657                // for i8
658                for i in -127..127 {
659                    for j in -127..127 {
660                        assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
661                    }
662                }
663
664                // last value
665                // FIXME: Use inclusive ranges for above loop when implemented
666                let i = 127;
667                for j in -127..127 {
668                    assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
669                }
670                assert_eq!(127.gcd(&127), 127);
671            }
672
673            #[test]
674            fn test_gcd_min_val() {
675                let min = <$T>::min_value();
676                let max = <$T>::max_value();
677                let max_pow2 = max / 2 + 1;
678                assert_eq!(min.gcd(&max), 1 as $T);
679                assert_eq!(max.gcd(&min), 1 as $T);
680                assert_eq!(min.gcd(&max_pow2), max_pow2);
681                assert_eq!(max_pow2.gcd(&min), max_pow2);
682                assert_eq!(min.gcd(&42), 2 as $T);
683                assert_eq!((42 as $T).gcd(&min), 2 as $T);
684            }
685
686            #[test]
687            #[should_panic]
688            fn test_gcd_min_val_min_val() {
689                let min = <$T>::min_value();
690                assert!(min.gcd(&min) >= 0);
691            }
692
693            #[test]
694            #[should_panic]
695            fn test_gcd_min_val_0() {
696                let min = <$T>::min_value();
697                assert!(min.gcd(&0) >= 0);
698            }
699
700            #[test]
701            #[should_panic]
702            fn test_gcd_0_min_val() {
703                let min = <$T>::min_value();
704                assert!((0 as $T).gcd(&min) >= 0);
705            }
706
707            #[test]
708            fn test_lcm() {
709                assert_eq!((1 as $T).lcm(&0), 0 as $T);
710                assert_eq!((0 as $T).lcm(&1), 0 as $T);
711                assert_eq!((1 as $T).lcm(&1), 1 as $T);
712                assert_eq!((-1 as $T).lcm(&1), 1 as $T);
713                assert_eq!((1 as $T).lcm(&-1), 1 as $T);
714                assert_eq!((-1 as $T).lcm(&-1), 1 as $T);
715                assert_eq!((8 as $T).lcm(&9), 72 as $T);
716                assert_eq!((11 as $T).lcm(&5), 55 as $T);
717            }
718
719            #[test]
720            fn test_gcd_lcm() {
721                use core::iter::once;
722                for i in once(0)
723                    .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
724                    .chain(once(-128))
725                {
726                    for j in once(0)
727                        .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
728                        .chain(once(-128))
729                    {
730                        assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j)));
731                    }
732                }
733            }
734
735            #[test]
736            fn test_extended_gcd_lcm() {
737                use core::fmt::Debug;
738                use traits::NumAssign;
739                use ExtendedGcd;
740
741                fn check<A: Copy + Debug + Integer + NumAssign>(a: A, b: A) {
742                    let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b);
743                    assert_eq!(gcd, x * a + y * b);
744                }
745
746                use core::iter::once;
747                for i in once(0)
748                    .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
749                    .chain(once(-128))
750                {
751                    for j in once(0)
752                        .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
753                        .chain(once(-128))
754                    {
755                        check(i, j);
756                        let (ExtendedGcd { gcd, .. }, lcm) = i.extended_gcd_lcm(&j);
757                        assert_eq!((gcd, lcm), (i.gcd(&j), i.lcm(&j)));
758                    }
759                }
760            }
761
762            #[test]
763            fn test_even() {
764                assert_eq!((-4 as $T).is_even(), true);
765                assert_eq!((-3 as $T).is_even(), false);
766                assert_eq!((-2 as $T).is_even(), true);
767                assert_eq!((-1 as $T).is_even(), false);
768                assert_eq!((0 as $T).is_even(), true);
769                assert_eq!((1 as $T).is_even(), false);
770                assert_eq!((2 as $T).is_even(), true);
771                assert_eq!((3 as $T).is_even(), false);
772                assert_eq!((4 as $T).is_even(), true);
773            }
774
775            #[test]
776            fn test_odd() {
777                assert_eq!((-4 as $T).is_odd(), false);
778                assert_eq!((-3 as $T).is_odd(), true);
779                assert_eq!((-2 as $T).is_odd(), false);
780                assert_eq!((-1 as $T).is_odd(), true);
781                assert_eq!((0 as $T).is_odd(), false);
782                assert_eq!((1 as $T).is_odd(), true);
783                assert_eq!((2 as $T).is_odd(), false);
784                assert_eq!((3 as $T).is_odd(), true);
785                assert_eq!((4 as $T).is_odd(), false);
786            }
787        }
788    };
789}
790
791impl_integer_for_isize!(i8, test_integer_i8);
792impl_integer_for_isize!(i16, test_integer_i16);
793impl_integer_for_isize!(i32, test_integer_i32);
794impl_integer_for_isize!(i64, test_integer_i64);
795impl_integer_for_isize!(isize, test_integer_isize);
796#[cfg(has_i128)]
797impl_integer_for_isize!(i128, test_integer_i128);
798
799macro_rules! impl_integer_for_usize {
800    ($T:ty, $test_mod:ident) => {
801        impl Integer for $T {
802            /// Unsigned integer division. Returns the same result as `div` (`/`).
803            #[inline]
804            fn div_floor(&self, other: &Self) -> Self {
805                *self / *other
806            }
807
808            /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`).
809            #[inline]
810            fn mod_floor(&self, other: &Self) -> Self {
811                *self % *other
812            }
813
814            #[inline]
815            fn div_ceil(&self, other: &Self) -> Self {
816                *self / *other + (0 != *self % *other) as Self
817            }
818
819            /// Calculates the Greatest Common Divisor (GCD) of the number and `other`
820            #[inline]
821            fn gcd(&self, other: &Self) -> Self {
822                // Use Stein's algorithm
823                let mut m = *self;
824                let mut n = *other;
825                if m == 0 || n == 0 {
826                    return m | n;
827                }
828
829                // find common factors of 2
830                let shift = (m | n).trailing_zeros();
831
832                // divide n and m by 2 until odd
833                m >>= m.trailing_zeros();
834                n >>= n.trailing_zeros();
835
836                while m != n {
837                    if m > n {
838                        m -= n;
839                        m >>= m.trailing_zeros();
840                    } else {
841                        n -= m;
842                        n >>= n.trailing_zeros();
843                    }
844                }
845                m << shift
846            }
847
848            #[inline]
849            fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) {
850                let egcd = self.extended_gcd(other);
851                // should not have to recalculate abs
852                let lcm = if egcd.gcd.is_zero() {
853                    Self::zero()
854                } else {
855                    *self * (*other / egcd.gcd)
856                };
857                (egcd, lcm)
858            }
859
860            /// Calculates the Lowest Common Multiple (LCM) of the number and `other`.
861            #[inline]
862            fn lcm(&self, other: &Self) -> Self {
863                self.gcd_lcm(other).1
864            }
865
866            /// Calculates the Greatest Common Divisor (GCD) and
867            /// Lowest Common Multiple (LCM) of the number and `other`.
868            #[inline]
869            fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
870                if self.is_zero() && other.is_zero() {
871                    return (Self::zero(), Self::zero());
872                }
873                let gcd = self.gcd(other);
874                let lcm = *self * (*other / gcd);
875                (gcd, lcm)
876            }
877
878            /// Deprecated, use `is_multiple_of` instead.
879            #[inline]
880            fn divides(&self, other: &Self) -> bool {
881                self.is_multiple_of(other)
882            }
883
884            /// Returns `true` if the number is a multiple of `other`.
885            #[inline]
886            fn is_multiple_of(&self, other: &Self) -> bool {
887                *self % *other == 0
888            }
889
890            /// Returns `true` if the number is divisible by `2`.
891            #[inline]
892            fn is_even(&self) -> bool {
893                *self % 2 == 0
894            }
895
896            /// Returns `true` if the number is not divisible by `2`.
897            #[inline]
898            fn is_odd(&self) -> bool {
899                !self.is_even()
900            }
901
902            /// Simultaneous truncated integer division and modulus.
903            #[inline]
904            fn div_rem(&self, other: &Self) -> (Self, Self) {
905                (*self / *other, *self % *other)
906            }
907        }
908
909        #[cfg(test)]
910        mod $test_mod {
911            use core::mem;
912            use Integer;
913
914            #[test]
915            fn test_div_mod_floor() {
916                assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T);
917                assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T);
918                assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T));
919                assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T);
920                assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T);
921                assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T));
922                assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T);
923                assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T);
924                assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T));
925            }
926
927            #[test]
928            fn test_gcd() {
929                assert_eq!((10 as $T).gcd(&2), 2 as $T);
930                assert_eq!((10 as $T).gcd(&3), 1 as $T);
931                assert_eq!((0 as $T).gcd(&3), 3 as $T);
932                assert_eq!((3 as $T).gcd(&3), 3 as $T);
933                assert_eq!((56 as $T).gcd(&42), 14 as $T);
934            }
935
936            #[test]
937            fn test_gcd_cmp_with_euclidean() {
938                fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
939                    while m != 0 {
940                        mem::swap(&mut m, &mut n);
941                        m %= n;
942                    }
943                    n
944                }
945
946                for i in 0..255 {
947                    for j in 0..255 {
948                        assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
949                    }
950                }
951
952                // last value
953                // FIXME: Use inclusive ranges for above loop when implemented
954                let i = 255;
955                for j in 0..255 {
956                    assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
957                }
958                assert_eq!(255.gcd(&255), 255);
959            }
960
961            #[test]
962            fn test_lcm() {
963                assert_eq!((1 as $T).lcm(&0), 0 as $T);
964                assert_eq!((0 as $T).lcm(&1), 0 as $T);
965                assert_eq!((1 as $T).lcm(&1), 1 as $T);
966                assert_eq!((8 as $T).lcm(&9), 72 as $T);
967                assert_eq!((11 as $T).lcm(&5), 55 as $T);
968                assert_eq!((15 as $T).lcm(&17), 255 as $T);
969            }
970
971            #[test]
972            fn test_gcd_lcm() {
973                for i in (0..).take(256) {
974                    for j in (0..).take(256) {
975                        assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j)));
976                    }
977                }
978            }
979
980            #[test]
981            fn test_is_multiple_of() {
982                assert!((6 as $T).is_multiple_of(&(6 as $T)));
983                assert!((6 as $T).is_multiple_of(&(3 as $T)));
984                assert!((6 as $T).is_multiple_of(&(1 as $T)));
985            }
986
987            #[test]
988            fn test_even() {
989                assert_eq!((0 as $T).is_even(), true);
990                assert_eq!((1 as $T).is_even(), false);
991                assert_eq!((2 as $T).is_even(), true);
992                assert_eq!((3 as $T).is_even(), false);
993                assert_eq!((4 as $T).is_even(), true);
994            }
995
996            #[test]
997            fn test_odd() {
998                assert_eq!((0 as $T).is_odd(), false);
999                assert_eq!((1 as $T).is_odd(), true);
1000                assert_eq!((2 as $T).is_odd(), false);
1001                assert_eq!((3 as $T).is_odd(), true);
1002                assert_eq!((4 as $T).is_odd(), false);
1003            }
1004        }
1005    };
1006}
1007
1008impl_integer_for_usize!(u8, test_integer_u8);
1009impl_integer_for_usize!(u16, test_integer_u16);
1010impl_integer_for_usize!(u32, test_integer_u32);
1011impl_integer_for_usize!(u64, test_integer_u64);
1012impl_integer_for_usize!(usize, test_integer_usize);
1013#[cfg(has_i128)]
1014impl_integer_for_usize!(u128, test_integer_u128);
1015
1016/// An iterator over binomial coefficients.
1017pub struct IterBinomial<T> {
1018    a: T,
1019    n: T,
1020    k: T,
1021}
1022
1023impl<T> IterBinomial<T>
1024where
1025    T: Integer,
1026{
1027    /// For a given n, iterate over all binomial coefficients binomial(n, k), for k=0...n.
1028    ///
1029    /// Note that this might overflow, depending on `T`. For the primitive
1030    /// integer types, the following n are the largest ones for which there will
1031    /// be no overflow:
1032    ///
1033    /// type | n
1034    /// -----|---
1035    /// u8   | 10
1036    /// i8   |  9
1037    /// u16  | 18
1038    /// i16  | 17
1039    /// u32  | 34
1040    /// i32  | 33
1041    /// u64  | 67
1042    /// i64  | 66
1043    ///
1044    /// For larger n, `T` should be a bigint type.
1045    pub fn new(n: T) -> IterBinomial<T> {
1046        IterBinomial {
1047            k: T::zero(),
1048            a: T::one(),
1049            n: n,
1050        }
1051    }
1052}
1053
1054impl<T> Iterator for IterBinomial<T>
1055where
1056    T: Integer + Clone,
1057{
1058    type Item = T;
1059
1060    fn next(&mut self) -> Option<T> {
1061        if self.k > self.n {
1062            return None;
1063        }
1064        self.a = if !self.k.is_zero() {
1065            multiply_and_divide(
1066                self.a.clone(),
1067                self.n.clone() - self.k.clone() + T::one(),
1068                self.k.clone(),
1069            )
1070        } else {
1071            T::one()
1072        };
1073        self.k = self.k.clone() + T::one();
1074        Some(self.a.clone())
1075    }
1076}
1077
1078/// Calculate r * a / b, avoiding overflows and fractions.
1079///
1080/// Assumes that b divides r * a evenly.
1081fn multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T {
1082    // See http://blog.plover.com/math/choose-2.html for the idea.
1083    let g = gcd(r.clone(), b.clone());
1084    r / g.clone() * (a / (b / g))
1085}
1086
1087/// Calculate the binomial coefficient.
1088///
1089/// Note that this might overflow, depending on `T`. For the primitive integer
1090/// types, the following n are the largest ones possible such that there will
1091/// be no overflow for any k:
1092///
1093/// type | n
1094/// -----|---
1095/// u8   | 10
1096/// i8   |  9
1097/// u16  | 18
1098/// i16  | 17
1099/// u32  | 34
1100/// i32  | 33
1101/// u64  | 67
1102/// i64  | 66
1103///
1104/// For larger n, consider using a bigint type for `T`.
1105pub fn binomial<T: Integer + Clone>(mut n: T, k: T) -> T {
1106    // See http://blog.plover.com/math/choose.html for the idea.
1107    if k > n {
1108        return T::zero();
1109    }
1110    if k > n.clone() - k.clone() {
1111        return binomial(n.clone(), n - k);
1112    }
1113    let mut r = T::one();
1114    let mut d = T::one();
1115    loop {
1116        if d > k {
1117            break;
1118        }
1119        r = multiply_and_divide(r, n.clone(), d.clone());
1120        n = n - T::one();
1121        d = d + T::one();
1122    }
1123    r
1124}
1125
1126/// Calculate the multinomial coefficient.
1127pub fn multinomial<T: Integer + Clone>(k: &[T]) -> T
1128where
1129    for<'a> T: Add<&'a T, Output = T>,
1130{
1131    let mut r = T::one();
1132    let mut p = T::zero();
1133    for i in k {
1134        p = p + i;
1135        r = r * binomial(p.clone(), i.clone());
1136    }
1137    r
1138}
1139
1140#[test]
1141fn test_lcm_overflow() {
1142    macro_rules! check {
1143        ($t:ty, $x:expr, $y:expr, $r:expr) => {{
1144            let x: $t = $x;
1145            let y: $t = $y;
1146            let o = x.checked_mul(y);
1147            assert!(
1148                o.is_none(),
1149                "sanity checking that {} input {} * {} overflows",
1150                stringify!($t),
1151                x,
1152                y
1153            );
1154            assert_eq!(x.lcm(&y), $r);
1155            assert_eq!(y.lcm(&x), $r);
1156        }};
1157    }
1158
1159    // Original bug (Issue #166)
1160    check!(i64, 46656000000000000, 600, 46656000000000000);
1161
1162    check!(i8, 0x40, 0x04, 0x40);
1163    check!(u8, 0x80, 0x02, 0x80);
1164    check!(i16, 0x40_00, 0x04, 0x40_00);
1165    check!(u16, 0x80_00, 0x02, 0x80_00);
1166    check!(i32, 0x4000_0000, 0x04, 0x4000_0000);
1167    check!(u32, 0x8000_0000, 0x02, 0x8000_0000);
1168    check!(i64, 0x4000_0000_0000_0000, 0x04, 0x4000_0000_0000_0000);
1169    check!(u64, 0x8000_0000_0000_0000, 0x02, 0x8000_0000_0000_0000);
1170}
1171
1172#[test]
1173fn test_iter_binomial() {
1174    macro_rules! check_simple {
1175        ($t:ty) => {{
1176            let n: $t = 3;
1177            let expected = [1, 3, 3, 1];
1178            for (b, &e) in IterBinomial::new(n).zip(&expected) {
1179                assert_eq!(b, e);
1180            }
1181        }};
1182    }
1183
1184    check_simple!(u8);
1185    check_simple!(i8);
1186    check_simple!(u16);
1187    check_simple!(i16);
1188    check_simple!(u32);
1189    check_simple!(i32);
1190    check_simple!(u64);
1191    check_simple!(i64);
1192
1193    macro_rules! check_binomial {
1194        ($t:ty, $n:expr) => {{
1195            let n: $t = $n;
1196            let mut k: $t = 0;
1197            for b in IterBinomial::new(n) {
1198                assert_eq!(b, binomial(n, k));
1199                k += 1;
1200            }
1201        }};
1202    }
1203
1204    // Check the largest n for which there is no overflow.
1205    check_binomial!(u8, 10);
1206    check_binomial!(i8, 9);
1207    check_binomial!(u16, 18);
1208    check_binomial!(i16, 17);
1209    check_binomial!(u32, 34);
1210    check_binomial!(i32, 33);
1211    check_binomial!(u64, 67);
1212    check_binomial!(i64, 66);
1213}
1214
1215#[test]
1216fn test_binomial() {
1217    macro_rules! check {
1218        ($t:ty, $x:expr, $y:expr, $r:expr) => {{
1219            let x: $t = $x;
1220            let y: $t = $y;
1221            let expected: $t = $r;
1222            assert_eq!(binomial(x, y), expected);
1223            if y <= x {
1224                assert_eq!(binomial(x, x - y), expected);
1225            }
1226        }};
1227    }
1228    check!(u8, 9, 4, 126);
1229    check!(u8, 0, 0, 1);
1230    check!(u8, 2, 3, 0);
1231
1232    check!(i8, 9, 4, 126);
1233    check!(i8, 0, 0, 1);
1234    check!(i8, 2, 3, 0);
1235
1236    check!(u16, 100, 2, 4950);
1237    check!(u16, 14, 4, 1001);
1238    check!(u16, 0, 0, 1);
1239    check!(u16, 2, 3, 0);
1240
1241    check!(i16, 100, 2, 4950);
1242    check!(i16, 14, 4, 1001);
1243    check!(i16, 0, 0, 1);
1244    check!(i16, 2, 3, 0);
1245
1246    check!(u32, 100, 2, 4950);
1247    check!(u32, 35, 11, 417225900);
1248    check!(u32, 14, 4, 1001);
1249    check!(u32, 0, 0, 1);
1250    check!(u32, 2, 3, 0);
1251
1252    check!(i32, 100, 2, 4950);
1253    check!(i32, 35, 11, 417225900);
1254    check!(i32, 14, 4, 1001);
1255    check!(i32, 0, 0, 1);
1256    check!(i32, 2, 3, 0);
1257
1258    check!(u64, 100, 2, 4950);
1259    check!(u64, 35, 11, 417225900);
1260    check!(u64, 14, 4, 1001);
1261    check!(u64, 0, 0, 1);
1262    check!(u64, 2, 3, 0);
1263
1264    check!(i64, 100, 2, 4950);
1265    check!(i64, 35, 11, 417225900);
1266    check!(i64, 14, 4, 1001);
1267    check!(i64, 0, 0, 1);
1268    check!(i64, 2, 3, 0);
1269}
1270
1271#[test]
1272fn test_multinomial() {
1273    macro_rules! check_binomial {
1274        ($t:ty, $k:expr) => {{
1275            let n: $t = $k.iter().fold(0, |acc, &x| acc + x);
1276            let k: &[$t] = $k;
1277            assert_eq!(k.len(), 2);
1278            assert_eq!(multinomial(k), binomial(n, k[0]));
1279        }};
1280    }
1281
1282    check_binomial!(u8, &[4, 5]);
1283
1284    check_binomial!(i8, &[4, 5]);
1285
1286    check_binomial!(u16, &[2, 98]);
1287    check_binomial!(u16, &[4, 10]);
1288
1289    check_binomial!(i16, &[2, 98]);
1290    check_binomial!(i16, &[4, 10]);
1291
1292    check_binomial!(u32, &[2, 98]);
1293    check_binomial!(u32, &[11, 24]);
1294    check_binomial!(u32, &[4, 10]);
1295
1296    check_binomial!(i32, &[2, 98]);
1297    check_binomial!(i32, &[11, 24]);
1298    check_binomial!(i32, &[4, 10]);
1299
1300    check_binomial!(u64, &[2, 98]);
1301    check_binomial!(u64, &[11, 24]);
1302    check_binomial!(u64, &[4, 10]);
1303
1304    check_binomial!(i64, &[2, 98]);
1305    check_binomial!(i64, &[11, 24]);
1306    check_binomial!(i64, &[4, 10]);
1307
1308    macro_rules! check_multinomial {
1309        ($t:ty, $k:expr, $r:expr) => {{
1310            let k: &[$t] = $k;
1311            let expected: $t = $r;
1312            assert_eq!(multinomial(k), expected);
1313        }};
1314    }
1315
1316    check_multinomial!(u8, &[2, 1, 2], 30);
1317    check_multinomial!(u8, &[2, 3, 0], 10);
1318
1319    check_multinomial!(i8, &[2, 1, 2], 30);
1320    check_multinomial!(i8, &[2, 3, 0], 10);
1321
1322    check_multinomial!(u16, &[2, 1, 2], 30);
1323    check_multinomial!(u16, &[2, 3, 0], 10);
1324
1325    check_multinomial!(i16, &[2, 1, 2], 30);
1326    check_multinomial!(i16, &[2, 3, 0], 10);
1327
1328    check_multinomial!(u32, &[2, 1, 2], 30);
1329    check_multinomial!(u32, &[2, 3, 0], 10);
1330
1331    check_multinomial!(i32, &[2, 1, 2], 30);
1332    check_multinomial!(i32, &[2, 3, 0], 10);
1333
1334    check_multinomial!(u64, &[2, 1, 2], 30);
1335    check_multinomial!(u64, &[2, 3, 0], 10);
1336
1337    check_multinomial!(i64, &[2, 1, 2], 30);
1338    check_multinomial!(i64, &[2, 3, 0], 10);
1339
1340    check_multinomial!(u64, &[], 1);
1341    check_multinomial!(u64, &[0], 1);
1342    check_multinomial!(u64, &[12345], 1);
1343}