1#![doc(html_root_url = "https://docs.rs/num-integer/0.1")]
18#![no_std]
19#[cfg(feature = "std")]
20extern crate std;
21
22extern crate num_traits as traits;
23
24use core::mem;
25use core::ops::Add;
26
27use traits::{Num, Signed, Zero};
28
29mod roots;
30pub use roots::Roots;
31pub use roots::{cbrt, nth_root, sqrt};
32
33mod average;
34pub use average::Average;
35pub use average::{average_ceil, average_floor};
36
37pub trait Integer: Sized + Num + PartialOrd + Ord + Eq {
38 fn div_floor(&self, other: &Self) -> Self;
55
56 fn mod_floor(&self, other: &Self) -> Self;
79
80 fn div_ceil(&self, other: &Self) -> Self {
97 let (q, r) = self.div_mod_floor(other);
98 if r.is_zero() {
99 q
100 } else {
101 q + Self::one()
102 }
103 }
104
105 fn gcd(&self, other: &Self) -> Self;
115
116 fn lcm(&self, other: &Self) -> Self;
127
128 #[inline]
142 fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
143 (self.gcd(other), self.lcm(other))
144 }
145
146 #[inline]
165 fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self>
166 where
167 Self: Clone,
168 {
169 let mut s = (Self::zero(), Self::one());
170 let mut t = (Self::one(), Self::zero());
171 let mut r = (other.clone(), self.clone());
172
173 while !r.0.is_zero() {
174 let q = r.1.clone() / r.0.clone();
175 let f = |mut r: (Self, Self)| {
176 mem::swap(&mut r.0, &mut r.1);
177 r.0 = r.0 - q.clone() * r.1.clone();
178 r
179 };
180 r = f(r);
181 s = f(s);
182 t = f(t);
183 }
184
185 if r.1 >= Self::zero() {
186 ExtendedGcd {
187 gcd: r.1,
188 x: s.1,
189 y: t.1,
190 _hidden: (),
191 }
192 } else {
193 ExtendedGcd {
194 gcd: Self::zero() - r.1,
195 x: Self::zero() - s.1,
196 y: Self::zero() - t.1,
197 _hidden: (),
198 }
199 }
200 }
201
202 #[inline]
204 fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self)
205 where
206 Self: Clone + Signed,
207 {
208 (self.extended_gcd(other), self.lcm(other))
209 }
210
211 fn divides(&self, other: &Self) -> bool;
213
214 fn is_multiple_of(&self, other: &Self) -> bool;
224
225 fn is_even(&self) -> bool;
235
236 fn is_odd(&self) -> bool;
246
247 fn div_rem(&self, other: &Self) -> (Self, Self);
265
266 fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
284 (self.div_floor(other), self.mod_floor(other))
285 }
286
287 #[inline]
307 fn next_multiple_of(&self, other: &Self) -> Self
308 where
309 Self: Clone,
310 {
311 let m = self.mod_floor(other);
312 self.clone()
313 + if m.is_zero() {
314 Self::zero()
315 } else {
316 other.clone() - m
317 }
318 }
319
320 #[inline]
340 fn prev_multiple_of(&self, other: &Self) -> Self
341 where
342 Self: Clone,
343 {
344 self.clone() - self.mod_floor(other)
345 }
346}
347
348#[derive(Debug, Clone, Copy, PartialEq, Eq)]
355pub struct ExtendedGcd<A> {
356 pub gcd: A,
357 pub x: A,
358 pub y: A,
359 _hidden: (),
360}
361
362#[inline]
364pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) {
365 x.div_rem(&y)
366}
367#[inline]
369pub fn div_floor<T: Integer>(x: T, y: T) -> T {
370 x.div_floor(&y)
371}
372#[inline]
374pub fn mod_floor<T: Integer>(x: T, y: T) -> T {
375 x.mod_floor(&y)
376}
377#[inline]
379pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) {
380 x.div_mod_floor(&y)
381}
382#[inline]
384pub fn div_ceil<T: Integer>(x: T, y: T) -> T {
385 x.div_ceil(&y)
386}
387
388#[inline(always)]
391pub fn gcd<T: Integer>(x: T, y: T) -> T {
392 x.gcd(&y)
393}
394#[inline(always)]
396pub fn lcm<T: Integer>(x: T, y: T) -> T {
397 x.lcm(&y)
398}
399
400#[inline(always)]
403pub fn gcd_lcm<T: Integer>(x: T, y: T) -> (T, T) {
404 x.gcd_lcm(&y)
405}
406
407macro_rules! impl_integer_for_isize {
408 ($T:ty, $test_mod:ident) => {
409 impl Integer for $T {
410 #[inline]
412 fn div_floor(&self, other: &Self) -> Self {
413 let (d, r) = self.div_rem(other);
416 if (r > 0 && *other < 0) || (r < 0 && *other > 0) {
417 d - 1
418 } else {
419 d
420 }
421 }
422
423 #[inline]
425 fn mod_floor(&self, other: &Self) -> Self {
426 let r = *self % *other;
429 if (r > 0 && *other < 0) || (r < 0 && *other > 0) {
430 r + *other
431 } else {
432 r
433 }
434 }
435
436 #[inline]
438 fn div_mod_floor(&self, other: &Self) -> (Self, Self) {
439 let (d, r) = self.div_rem(other);
442 if (r > 0 && *other < 0) || (r < 0 && *other > 0) {
443 (d - 1, r + *other)
444 } else {
445 (d, r)
446 }
447 }
448
449 #[inline]
450 fn div_ceil(&self, other: &Self) -> Self {
451 let (d, r) = self.div_rem(other);
452 if (r > 0 && *other > 0) || (r < 0 && *other < 0) {
453 d + 1
454 } else {
455 d
456 }
457 }
458
459 #[inline]
462 fn gcd(&self, other: &Self) -> Self {
463 let mut m = *self;
465 let mut n = *other;
466 if m == 0 || n == 0 {
467 return (m | n).abs();
468 }
469
470 let shift = (m | n).trailing_zeros();
472
473 if m == Self::min_value() || n == Self::min_value() {
482 return (1 << shift).abs();
483 }
484
485 m = m.abs();
487 n = n.abs();
488
489 m >>= m.trailing_zeros();
491 n >>= n.trailing_zeros();
492
493 while m != n {
494 if m > n {
495 m -= n;
496 m >>= m.trailing_zeros();
497 } else {
498 n -= m;
499 n >>= n.trailing_zeros();
500 }
501 }
502 m << shift
503 }
504
505 #[inline]
506 fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) {
507 let egcd = self.extended_gcd(other);
508 let lcm = if egcd.gcd.is_zero() {
510 Self::zero()
511 } else {
512 (*self * (*other / egcd.gcd)).abs()
513 };
514 (egcd, lcm)
515 }
516
517 #[inline]
520 fn lcm(&self, other: &Self) -> Self {
521 self.gcd_lcm(other).1
522 }
523
524 #[inline]
527 fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
528 if self.is_zero() && other.is_zero() {
529 return (Self::zero(), Self::zero());
530 }
531 let gcd = self.gcd(other);
532 let lcm = (*self * (*other / gcd)).abs();
534 (gcd, lcm)
535 }
536
537 #[inline]
539 fn divides(&self, other: &Self) -> bool {
540 self.is_multiple_of(other)
541 }
542
543 #[inline]
545 fn is_multiple_of(&self, other: &Self) -> bool {
546 *self % *other == 0
547 }
548
549 #[inline]
551 fn is_even(&self) -> bool {
552 (*self) & 1 == 0
553 }
554
555 #[inline]
557 fn is_odd(&self) -> bool {
558 !self.is_even()
559 }
560
561 #[inline]
563 fn div_rem(&self, other: &Self) -> (Self, Self) {
564 (*self / *other, *self % *other)
565 }
566 }
567
568 #[cfg(test)]
569 mod $test_mod {
570 use core::mem;
571 use Integer;
572
573 #[cfg(test)]
579 fn test_division_rule((n, d): ($T, $T), (q, r): ($T, $T)) {
580 assert_eq!(d * q + r, n);
581 }
582
583 #[test]
584 fn test_div_rem() {
585 fn test_nd_dr(nd: ($T, $T), qr: ($T, $T)) {
586 let (n, d) = nd;
587 let separate_div_rem = (n / d, n % d);
588 let combined_div_rem = n.div_rem(&d);
589
590 assert_eq!(separate_div_rem, qr);
591 assert_eq!(combined_div_rem, qr);
592
593 test_division_rule(nd, separate_div_rem);
594 test_division_rule(nd, combined_div_rem);
595 }
596
597 test_nd_dr((8, 3), (2, 2));
598 test_nd_dr((8, -3), (-2, 2));
599 test_nd_dr((-8, 3), (-2, -2));
600 test_nd_dr((-8, -3), (2, -2));
601
602 test_nd_dr((1, 2), (0, 1));
603 test_nd_dr((1, -2), (0, 1));
604 test_nd_dr((-1, 2), (0, -1));
605 test_nd_dr((-1, -2), (0, -1));
606 }
607
608 #[test]
609 fn test_div_mod_floor() {
610 fn test_nd_dm(nd: ($T, $T), dm: ($T, $T)) {
611 let (n, d) = nd;
612 let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d));
613 let combined_div_mod_floor = n.div_mod_floor(&d);
614
615 assert_eq!(separate_div_mod_floor, dm);
616 assert_eq!(combined_div_mod_floor, dm);
617
618 test_division_rule(nd, separate_div_mod_floor);
619 test_division_rule(nd, combined_div_mod_floor);
620 }
621
622 test_nd_dm((8, 3), (2, 2));
623 test_nd_dm((8, -3), (-3, -1));
624 test_nd_dm((-8, 3), (-3, 1));
625 test_nd_dm((-8, -3), (2, -2));
626
627 test_nd_dm((1, 2), (0, 1));
628 test_nd_dm((1, -2), (-1, -1));
629 test_nd_dm((-1, 2), (-1, 1));
630 test_nd_dm((-1, -2), (0, -1));
631 }
632
633 #[test]
634 fn test_gcd() {
635 assert_eq!((10 as $T).gcd(&2), 2 as $T);
636 assert_eq!((10 as $T).gcd(&3), 1 as $T);
637 assert_eq!((0 as $T).gcd(&3), 3 as $T);
638 assert_eq!((3 as $T).gcd(&3), 3 as $T);
639 assert_eq!((56 as $T).gcd(&42), 14 as $T);
640 assert_eq!((3 as $T).gcd(&-3), 3 as $T);
641 assert_eq!((-6 as $T).gcd(&3), 3 as $T);
642 assert_eq!((-4 as $T).gcd(&-2), 2 as $T);
643 }
644
645 #[test]
646 fn test_gcd_cmp_with_euclidean() {
647 fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
648 while m != 0 {
649 mem::swap(&mut m, &mut n);
650 m %= n;
651 }
652
653 n.abs()
654 }
655
656 for i in -127..127 {
659 for j in -127..127 {
660 assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
661 }
662 }
663
664 let i = 127;
667 for j in -127..127 {
668 assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
669 }
670 assert_eq!(127.gcd(&127), 127);
671 }
672
673 #[test]
674 fn test_gcd_min_val() {
675 let min = <$T>::min_value();
676 let max = <$T>::max_value();
677 let max_pow2 = max / 2 + 1;
678 assert_eq!(min.gcd(&max), 1 as $T);
679 assert_eq!(max.gcd(&min), 1 as $T);
680 assert_eq!(min.gcd(&max_pow2), max_pow2);
681 assert_eq!(max_pow2.gcd(&min), max_pow2);
682 assert_eq!(min.gcd(&42), 2 as $T);
683 assert_eq!((42 as $T).gcd(&min), 2 as $T);
684 }
685
686 #[test]
687 #[should_panic]
688 fn test_gcd_min_val_min_val() {
689 let min = <$T>::min_value();
690 assert!(min.gcd(&min) >= 0);
691 }
692
693 #[test]
694 #[should_panic]
695 fn test_gcd_min_val_0() {
696 let min = <$T>::min_value();
697 assert!(min.gcd(&0) >= 0);
698 }
699
700 #[test]
701 #[should_panic]
702 fn test_gcd_0_min_val() {
703 let min = <$T>::min_value();
704 assert!((0 as $T).gcd(&min) >= 0);
705 }
706
707 #[test]
708 fn test_lcm() {
709 assert_eq!((1 as $T).lcm(&0), 0 as $T);
710 assert_eq!((0 as $T).lcm(&1), 0 as $T);
711 assert_eq!((1 as $T).lcm(&1), 1 as $T);
712 assert_eq!((-1 as $T).lcm(&1), 1 as $T);
713 assert_eq!((1 as $T).lcm(&-1), 1 as $T);
714 assert_eq!((-1 as $T).lcm(&-1), 1 as $T);
715 assert_eq!((8 as $T).lcm(&9), 72 as $T);
716 assert_eq!((11 as $T).lcm(&5), 55 as $T);
717 }
718
719 #[test]
720 fn test_gcd_lcm() {
721 use core::iter::once;
722 for i in once(0)
723 .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
724 .chain(once(-128))
725 {
726 for j in once(0)
727 .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
728 .chain(once(-128))
729 {
730 assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j)));
731 }
732 }
733 }
734
735 #[test]
736 fn test_extended_gcd_lcm() {
737 use core::fmt::Debug;
738 use traits::NumAssign;
739 use ExtendedGcd;
740
741 fn check<A: Copy + Debug + Integer + NumAssign>(a: A, b: A) {
742 let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b);
743 assert_eq!(gcd, x * a + y * b);
744 }
745
746 use core::iter::once;
747 for i in once(0)
748 .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
749 .chain(once(-128))
750 {
751 for j in once(0)
752 .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a))))
753 .chain(once(-128))
754 {
755 check(i, j);
756 let (ExtendedGcd { gcd, .. }, lcm) = i.extended_gcd_lcm(&j);
757 assert_eq!((gcd, lcm), (i.gcd(&j), i.lcm(&j)));
758 }
759 }
760 }
761
762 #[test]
763 fn test_even() {
764 assert_eq!((-4 as $T).is_even(), true);
765 assert_eq!((-3 as $T).is_even(), false);
766 assert_eq!((-2 as $T).is_even(), true);
767 assert_eq!((-1 as $T).is_even(), false);
768 assert_eq!((0 as $T).is_even(), true);
769 assert_eq!((1 as $T).is_even(), false);
770 assert_eq!((2 as $T).is_even(), true);
771 assert_eq!((3 as $T).is_even(), false);
772 assert_eq!((4 as $T).is_even(), true);
773 }
774
775 #[test]
776 fn test_odd() {
777 assert_eq!((-4 as $T).is_odd(), false);
778 assert_eq!((-3 as $T).is_odd(), true);
779 assert_eq!((-2 as $T).is_odd(), false);
780 assert_eq!((-1 as $T).is_odd(), true);
781 assert_eq!((0 as $T).is_odd(), false);
782 assert_eq!((1 as $T).is_odd(), true);
783 assert_eq!((2 as $T).is_odd(), false);
784 assert_eq!((3 as $T).is_odd(), true);
785 assert_eq!((4 as $T).is_odd(), false);
786 }
787 }
788 };
789}
790
791impl_integer_for_isize!(i8, test_integer_i8);
792impl_integer_for_isize!(i16, test_integer_i16);
793impl_integer_for_isize!(i32, test_integer_i32);
794impl_integer_for_isize!(i64, test_integer_i64);
795impl_integer_for_isize!(isize, test_integer_isize);
796#[cfg(has_i128)]
797impl_integer_for_isize!(i128, test_integer_i128);
798
799macro_rules! impl_integer_for_usize {
800 ($T:ty, $test_mod:ident) => {
801 impl Integer for $T {
802 #[inline]
804 fn div_floor(&self, other: &Self) -> Self {
805 *self / *other
806 }
807
808 #[inline]
810 fn mod_floor(&self, other: &Self) -> Self {
811 *self % *other
812 }
813
814 #[inline]
815 fn div_ceil(&self, other: &Self) -> Self {
816 *self / *other + (0 != *self % *other) as Self
817 }
818
819 #[inline]
821 fn gcd(&self, other: &Self) -> Self {
822 let mut m = *self;
824 let mut n = *other;
825 if m == 0 || n == 0 {
826 return m | n;
827 }
828
829 let shift = (m | n).trailing_zeros();
831
832 m >>= m.trailing_zeros();
834 n >>= n.trailing_zeros();
835
836 while m != n {
837 if m > n {
838 m -= n;
839 m >>= m.trailing_zeros();
840 } else {
841 n -= m;
842 n >>= n.trailing_zeros();
843 }
844 }
845 m << shift
846 }
847
848 #[inline]
849 fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) {
850 let egcd = self.extended_gcd(other);
851 let lcm = if egcd.gcd.is_zero() {
853 Self::zero()
854 } else {
855 *self * (*other / egcd.gcd)
856 };
857 (egcd, lcm)
858 }
859
860 #[inline]
862 fn lcm(&self, other: &Self) -> Self {
863 self.gcd_lcm(other).1
864 }
865
866 #[inline]
869 fn gcd_lcm(&self, other: &Self) -> (Self, Self) {
870 if self.is_zero() && other.is_zero() {
871 return (Self::zero(), Self::zero());
872 }
873 let gcd = self.gcd(other);
874 let lcm = *self * (*other / gcd);
875 (gcd, lcm)
876 }
877
878 #[inline]
880 fn divides(&self, other: &Self) -> bool {
881 self.is_multiple_of(other)
882 }
883
884 #[inline]
886 fn is_multiple_of(&self, other: &Self) -> bool {
887 *self % *other == 0
888 }
889
890 #[inline]
892 fn is_even(&self) -> bool {
893 *self % 2 == 0
894 }
895
896 #[inline]
898 fn is_odd(&self) -> bool {
899 !self.is_even()
900 }
901
902 #[inline]
904 fn div_rem(&self, other: &Self) -> (Self, Self) {
905 (*self / *other, *self % *other)
906 }
907 }
908
909 #[cfg(test)]
910 mod $test_mod {
911 use core::mem;
912 use Integer;
913
914 #[test]
915 fn test_div_mod_floor() {
916 assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T);
917 assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T);
918 assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T));
919 assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T);
920 assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T);
921 assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T));
922 assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T);
923 assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T);
924 assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T));
925 }
926
927 #[test]
928 fn test_gcd() {
929 assert_eq!((10 as $T).gcd(&2), 2 as $T);
930 assert_eq!((10 as $T).gcd(&3), 1 as $T);
931 assert_eq!((0 as $T).gcd(&3), 3 as $T);
932 assert_eq!((3 as $T).gcd(&3), 3 as $T);
933 assert_eq!((56 as $T).gcd(&42), 14 as $T);
934 }
935
936 #[test]
937 fn test_gcd_cmp_with_euclidean() {
938 fn euclidean_gcd(mut m: $T, mut n: $T) -> $T {
939 while m != 0 {
940 mem::swap(&mut m, &mut n);
941 m %= n;
942 }
943 n
944 }
945
946 for i in 0..255 {
947 for j in 0..255 {
948 assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
949 }
950 }
951
952 let i = 255;
955 for j in 0..255 {
956 assert_eq!(euclidean_gcd(i, j), i.gcd(&j));
957 }
958 assert_eq!(255.gcd(&255), 255);
959 }
960
961 #[test]
962 fn test_lcm() {
963 assert_eq!((1 as $T).lcm(&0), 0 as $T);
964 assert_eq!((0 as $T).lcm(&1), 0 as $T);
965 assert_eq!((1 as $T).lcm(&1), 1 as $T);
966 assert_eq!((8 as $T).lcm(&9), 72 as $T);
967 assert_eq!((11 as $T).lcm(&5), 55 as $T);
968 assert_eq!((15 as $T).lcm(&17), 255 as $T);
969 }
970
971 #[test]
972 fn test_gcd_lcm() {
973 for i in (0..).take(256) {
974 for j in (0..).take(256) {
975 assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j)));
976 }
977 }
978 }
979
980 #[test]
981 fn test_is_multiple_of() {
982 assert!((6 as $T).is_multiple_of(&(6 as $T)));
983 assert!((6 as $T).is_multiple_of(&(3 as $T)));
984 assert!((6 as $T).is_multiple_of(&(1 as $T)));
985 }
986
987 #[test]
988 fn test_even() {
989 assert_eq!((0 as $T).is_even(), true);
990 assert_eq!((1 as $T).is_even(), false);
991 assert_eq!((2 as $T).is_even(), true);
992 assert_eq!((3 as $T).is_even(), false);
993 assert_eq!((4 as $T).is_even(), true);
994 }
995
996 #[test]
997 fn test_odd() {
998 assert_eq!((0 as $T).is_odd(), false);
999 assert_eq!((1 as $T).is_odd(), true);
1000 assert_eq!((2 as $T).is_odd(), false);
1001 assert_eq!((3 as $T).is_odd(), true);
1002 assert_eq!((4 as $T).is_odd(), false);
1003 }
1004 }
1005 };
1006}
1007
1008impl_integer_for_usize!(u8, test_integer_u8);
1009impl_integer_for_usize!(u16, test_integer_u16);
1010impl_integer_for_usize!(u32, test_integer_u32);
1011impl_integer_for_usize!(u64, test_integer_u64);
1012impl_integer_for_usize!(usize, test_integer_usize);
1013#[cfg(has_i128)]
1014impl_integer_for_usize!(u128, test_integer_u128);
1015
1016pub struct IterBinomial<T> {
1018 a: T,
1019 n: T,
1020 k: T,
1021}
1022
1023impl<T> IterBinomial<T>
1024where
1025 T: Integer,
1026{
1027 pub fn new(n: T) -> IterBinomial<T> {
1046 IterBinomial {
1047 k: T::zero(),
1048 a: T::one(),
1049 n: n,
1050 }
1051 }
1052}
1053
1054impl<T> Iterator for IterBinomial<T>
1055where
1056 T: Integer + Clone,
1057{
1058 type Item = T;
1059
1060 fn next(&mut self) -> Option<T> {
1061 if self.k > self.n {
1062 return None;
1063 }
1064 self.a = if !self.k.is_zero() {
1065 multiply_and_divide(
1066 self.a.clone(),
1067 self.n.clone() - self.k.clone() + T::one(),
1068 self.k.clone(),
1069 )
1070 } else {
1071 T::one()
1072 };
1073 self.k = self.k.clone() + T::one();
1074 Some(self.a.clone())
1075 }
1076}
1077
1078fn multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T {
1082 let g = gcd(r.clone(), b.clone());
1084 r / g.clone() * (a / (b / g))
1085}
1086
1087pub fn binomial<T: Integer + Clone>(mut n: T, k: T) -> T {
1106 if k > n {
1108 return T::zero();
1109 }
1110 if k > n.clone() - k.clone() {
1111 return binomial(n.clone(), n - k);
1112 }
1113 let mut r = T::one();
1114 let mut d = T::one();
1115 loop {
1116 if d > k {
1117 break;
1118 }
1119 r = multiply_and_divide(r, n.clone(), d.clone());
1120 n = n - T::one();
1121 d = d + T::one();
1122 }
1123 r
1124}
1125
1126pub fn multinomial<T: Integer + Clone>(k: &[T]) -> T
1128where
1129 for<'a> T: Add<&'a T, Output = T>,
1130{
1131 let mut r = T::one();
1132 let mut p = T::zero();
1133 for i in k {
1134 p = p + i;
1135 r = r * binomial(p.clone(), i.clone());
1136 }
1137 r
1138}
1139
1140#[test]
1141fn test_lcm_overflow() {
1142 macro_rules! check {
1143 ($t:ty, $x:expr, $y:expr, $r:expr) => {{
1144 let x: $t = $x;
1145 let y: $t = $y;
1146 let o = x.checked_mul(y);
1147 assert!(
1148 o.is_none(),
1149 "sanity checking that {} input {} * {} overflows",
1150 stringify!($t),
1151 x,
1152 y
1153 );
1154 assert_eq!(x.lcm(&y), $r);
1155 assert_eq!(y.lcm(&x), $r);
1156 }};
1157 }
1158
1159 check!(i64, 46656000000000000, 600, 46656000000000000);
1161
1162 check!(i8, 0x40, 0x04, 0x40);
1163 check!(u8, 0x80, 0x02, 0x80);
1164 check!(i16, 0x40_00, 0x04, 0x40_00);
1165 check!(u16, 0x80_00, 0x02, 0x80_00);
1166 check!(i32, 0x4000_0000, 0x04, 0x4000_0000);
1167 check!(u32, 0x8000_0000, 0x02, 0x8000_0000);
1168 check!(i64, 0x4000_0000_0000_0000, 0x04, 0x4000_0000_0000_0000);
1169 check!(u64, 0x8000_0000_0000_0000, 0x02, 0x8000_0000_0000_0000);
1170}
1171
1172#[test]
1173fn test_iter_binomial() {
1174 macro_rules! check_simple {
1175 ($t:ty) => {{
1176 let n: $t = 3;
1177 let expected = [1, 3, 3, 1];
1178 for (b, &e) in IterBinomial::new(n).zip(&expected) {
1179 assert_eq!(b, e);
1180 }
1181 }};
1182 }
1183
1184 check_simple!(u8);
1185 check_simple!(i8);
1186 check_simple!(u16);
1187 check_simple!(i16);
1188 check_simple!(u32);
1189 check_simple!(i32);
1190 check_simple!(u64);
1191 check_simple!(i64);
1192
1193 macro_rules! check_binomial {
1194 ($t:ty, $n:expr) => {{
1195 let n: $t = $n;
1196 let mut k: $t = 0;
1197 for b in IterBinomial::new(n) {
1198 assert_eq!(b, binomial(n, k));
1199 k += 1;
1200 }
1201 }};
1202 }
1203
1204 check_binomial!(u8, 10);
1206 check_binomial!(i8, 9);
1207 check_binomial!(u16, 18);
1208 check_binomial!(i16, 17);
1209 check_binomial!(u32, 34);
1210 check_binomial!(i32, 33);
1211 check_binomial!(u64, 67);
1212 check_binomial!(i64, 66);
1213}
1214
1215#[test]
1216fn test_binomial() {
1217 macro_rules! check {
1218 ($t:ty, $x:expr, $y:expr, $r:expr) => {{
1219 let x: $t = $x;
1220 let y: $t = $y;
1221 let expected: $t = $r;
1222 assert_eq!(binomial(x, y), expected);
1223 if y <= x {
1224 assert_eq!(binomial(x, x - y), expected);
1225 }
1226 }};
1227 }
1228 check!(u8, 9, 4, 126);
1229 check!(u8, 0, 0, 1);
1230 check!(u8, 2, 3, 0);
1231
1232 check!(i8, 9, 4, 126);
1233 check!(i8, 0, 0, 1);
1234 check!(i8, 2, 3, 0);
1235
1236 check!(u16, 100, 2, 4950);
1237 check!(u16, 14, 4, 1001);
1238 check!(u16, 0, 0, 1);
1239 check!(u16, 2, 3, 0);
1240
1241 check!(i16, 100, 2, 4950);
1242 check!(i16, 14, 4, 1001);
1243 check!(i16, 0, 0, 1);
1244 check!(i16, 2, 3, 0);
1245
1246 check!(u32, 100, 2, 4950);
1247 check!(u32, 35, 11, 417225900);
1248 check!(u32, 14, 4, 1001);
1249 check!(u32, 0, 0, 1);
1250 check!(u32, 2, 3, 0);
1251
1252 check!(i32, 100, 2, 4950);
1253 check!(i32, 35, 11, 417225900);
1254 check!(i32, 14, 4, 1001);
1255 check!(i32, 0, 0, 1);
1256 check!(i32, 2, 3, 0);
1257
1258 check!(u64, 100, 2, 4950);
1259 check!(u64, 35, 11, 417225900);
1260 check!(u64, 14, 4, 1001);
1261 check!(u64, 0, 0, 1);
1262 check!(u64, 2, 3, 0);
1263
1264 check!(i64, 100, 2, 4950);
1265 check!(i64, 35, 11, 417225900);
1266 check!(i64, 14, 4, 1001);
1267 check!(i64, 0, 0, 1);
1268 check!(i64, 2, 3, 0);
1269}
1270
1271#[test]
1272fn test_multinomial() {
1273 macro_rules! check_binomial {
1274 ($t:ty, $k:expr) => {{
1275 let n: $t = $k.iter().fold(0, |acc, &x| acc + x);
1276 let k: &[$t] = $k;
1277 assert_eq!(k.len(), 2);
1278 assert_eq!(multinomial(k), binomial(n, k[0]));
1279 }};
1280 }
1281
1282 check_binomial!(u8, &[4, 5]);
1283
1284 check_binomial!(i8, &[4, 5]);
1285
1286 check_binomial!(u16, &[2, 98]);
1287 check_binomial!(u16, &[4, 10]);
1288
1289 check_binomial!(i16, &[2, 98]);
1290 check_binomial!(i16, &[4, 10]);
1291
1292 check_binomial!(u32, &[2, 98]);
1293 check_binomial!(u32, &[11, 24]);
1294 check_binomial!(u32, &[4, 10]);
1295
1296 check_binomial!(i32, &[2, 98]);
1297 check_binomial!(i32, &[11, 24]);
1298 check_binomial!(i32, &[4, 10]);
1299
1300 check_binomial!(u64, &[2, 98]);
1301 check_binomial!(u64, &[11, 24]);
1302 check_binomial!(u64, &[4, 10]);
1303
1304 check_binomial!(i64, &[2, 98]);
1305 check_binomial!(i64, &[11, 24]);
1306 check_binomial!(i64, &[4, 10]);
1307
1308 macro_rules! check_multinomial {
1309 ($t:ty, $k:expr, $r:expr) => {{
1310 let k: &[$t] = $k;
1311 let expected: $t = $r;
1312 assert_eq!(multinomial(k), expected);
1313 }};
1314 }
1315
1316 check_multinomial!(u8, &[2, 1, 2], 30);
1317 check_multinomial!(u8, &[2, 3, 0], 10);
1318
1319 check_multinomial!(i8, &[2, 1, 2], 30);
1320 check_multinomial!(i8, &[2, 3, 0], 10);
1321
1322 check_multinomial!(u16, &[2, 1, 2], 30);
1323 check_multinomial!(u16, &[2, 3, 0], 10);
1324
1325 check_multinomial!(i16, &[2, 1, 2], 30);
1326 check_multinomial!(i16, &[2, 3, 0], 10);
1327
1328 check_multinomial!(u32, &[2, 1, 2], 30);
1329 check_multinomial!(u32, &[2, 3, 0], 10);
1330
1331 check_multinomial!(i32, &[2, 1, 2], 30);
1332 check_multinomial!(i32, &[2, 3, 0], 10);
1333
1334 check_multinomial!(u64, &[2, 1, 2], 30);
1335 check_multinomial!(u64, &[2, 3, 0], 10);
1336
1337 check_multinomial!(i64, &[2, 1, 2], 30);
1338 check_multinomial!(i64, &[2, 3, 0], 10);
1339
1340 check_multinomial!(u64, &[], 1);
1341 check_multinomial!(u64, &[0], 1);
1342 check_multinomial!(u64, &[12345], 1);
1343}