criterion/stats/univariate/outliers/
tukey.rs1use std::iter::IntoIterator;
41use std::ops::{Deref, Index};
42use std::slice;
43
44use cast;
45use stats::float::Float;
46
47use stats::univariate::Sample;
48
49use self::Label::*;
50
51#[derive(Clone, Copy)]
60pub struct LabeledSample<'a, A>
61where
62 A: 'a + Float,
63{
64 fences: (A, A, A, A),
65 sample: &'a Sample<A>,
66}
67
68impl<'a, A> LabeledSample<'a, A>
69where
70 A: Float,
71{
72 #[cfg_attr(feature = "cargo-clippy", allow(clippy::similar_names))]
76 pub fn count(&self) -> (usize, usize, usize, usize, usize) {
77 let (mut los, mut lom, mut noa, mut him, mut his) = (0, 0, 0, 0, 0);
78
79 for (_, label) in self {
80 match label {
81 LowSevere => {
82 los += 1;
83 }
84 LowMild => {
85 lom += 1;
86 }
87 NotAnOutlier => {
88 noa += 1;
89 }
90 HighMild => {
91 him += 1;
92 }
93 HighSevere => {
94 his += 1;
95 }
96 }
97 }
98
99 (los, lom, noa, him, his)
100 }
101
102 pub fn fences(&self) -> (A, A, A, A) {
104 self.fences
105 }
106
107 pub fn iter(&self) -> Iter<'a, A> {
109 Iter {
110 fences: self.fences,
111 iter: self.sample.iter(),
112 }
113 }
114}
115
116impl<'a, A> Deref for LabeledSample<'a, A>
117where
118 A: Float,
119{
120 type Target = Sample<A>;
121
122 fn deref(&self) -> &Sample<A> {
123 self.sample
124 }
125}
126
127impl<'a, A> Index<usize> for LabeledSample<'a, A>
129where
130 A: Float,
131{
132 type Output = Label;
133
134 #[cfg_attr(feature = "cargo-clippy", allow(clippy::similar_names))]
135 fn index(&self, i: usize) -> &Label {
136 static LOW_SEVERE: Label = LowSevere;
137 static LOW_MILD: Label = LowMild;
138 static HIGH_MILD: Label = HighMild;
139 static HIGH_SEVERE: Label = HighSevere;
140 static NOT_AN_OUTLIER: Label = NotAnOutlier;
141
142 let x = self.sample[i];
143 let (lost, lomt, himt, hist) = self.fences;
144
145 if x < lost {
146 &LOW_SEVERE
147 } else if x > hist {
148 &HIGH_SEVERE
149 } else if x < lomt {
150 &LOW_MILD
151 } else if x > himt {
152 &HIGH_MILD
153 } else {
154 &NOT_AN_OUTLIER
155 }
156 }
157}
158
159impl<'a, 'b, A> IntoIterator for &'b LabeledSample<'a, A>
160where
161 A: Float,
162{
163 type Item = (A, Label);
164 type IntoIter = Iter<'a, A>;
165
166 fn into_iter(self) -> Iter<'a, A> {
167 self.iter()
168 }
169}
170
171pub struct Iter<'a, A>
173where
174 A: 'a + Float,
175{
176 fences: (A, A, A, A),
177 iter: slice::Iter<'a, A>,
178}
179
180impl<'a, A> Iterator for Iter<'a, A>
181where
182 A: Float,
183{
184 type Item = (A, Label);
185
186 #[cfg_attr(feature = "cargo-clippy", allow(clippy::similar_names))]
187 fn next(&mut self) -> Option<(A, Label)> {
188 self.iter.next().map(|&x| {
189 let (lost, lomt, himt, hist) = self.fences;
190
191 let label = if x < lost {
192 LowSevere
193 } else if x > hist {
194 HighSevere
195 } else if x < lomt {
196 LowMild
197 } else if x > himt {
198 HighMild
199 } else {
200 NotAnOutlier
201 };
202
203 (x, label)
204 })
205 }
206
207 fn size_hint(&self) -> (usize, Option<usize>) {
208 self.iter.size_hint()
209 }
210}
211
212pub enum Label {
214 HighMild,
216 HighSevere,
218 LowMild,
220 LowSevere,
222 NotAnOutlier,
224}
225
226impl Label {
227 pub fn is_high(&self) -> bool {
229 match *self {
230 HighMild | HighSevere => true,
231 _ => false,
232 }
233 }
234
235 pub fn is_mild(&self) -> bool {
237 match *self {
238 HighMild | LowMild => true,
239 _ => false,
240 }
241 }
242
243 pub fn is_low(&self) -> bool {
245 match *self {
246 LowMild | LowSevere => true,
247 _ => false,
248 }
249 }
250
251 pub fn is_outlier(&self) -> bool {
253 match *self {
254 NotAnOutlier => false,
255 _ => true,
256 }
257 }
258
259 pub fn is_severe(&self) -> bool {
261 match *self {
262 HighSevere | LowSevere => true,
263 _ => false,
264 }
265 }
266}
267
268pub fn classify<A>(sample: &Sample<A>) -> LabeledSample<A>
272where
273 A: Float,
274 usize: cast::From<A, Output = Result<usize, cast::Error>>,
275{
276 let (q1, _, q3) = sample.percentiles().quartiles();
277 let iqr = q3 - q1;
278
279 let k_m = A::cast(1.5_f32);
281 let k_s = A::cast(3);
283
284 LabeledSample {
285 fences: (
286 q1 - k_s * iqr,
287 q1 - k_m * iqr,
288 q3 + k_m * iqr,
289 q3 + k_s * iqr,
290 ),
291 sample,
292 }
293}