chrono/datetime/mod.rs
1// This is a part of Chrono.
2// See README.md and LICENSE.txt for details.
3
4//! ISO 8601 date and time with time zone.
5
6#[cfg(all(not(feature = "std"), feature = "alloc"))]
7use alloc::string::String;
8use core::borrow::Borrow;
9use core::cmp::Ordering;
10use core::fmt::Write;
11use core::ops::{Add, AddAssign, Sub, SubAssign};
12use core::time::Duration;
13use core::{fmt, hash, str};
14#[cfg(feature = "std")]
15use std::time::{SystemTime, UNIX_EPOCH};
16
17#[cfg(all(feature = "unstable-locales", feature = "alloc"))]
18use crate::format::Locale;
19use crate::format::{
20 parse, parse_and_remainder, parse_rfc3339, Fixed, Item, ParseError, ParseResult, Parsed,
21 StrftimeItems, TOO_LONG,
22};
23#[cfg(feature = "alloc")]
24use crate::format::{write_rfc2822, write_rfc3339, DelayedFormat, SecondsFormat};
25use crate::naive::{Days, IsoWeek, NaiveDate, NaiveDateTime, NaiveTime};
26#[cfg(feature = "clock")]
27use crate::offset::Local;
28use crate::offset::{FixedOffset, Offset, TimeZone, Utc};
29use crate::try_opt;
30#[allow(deprecated)]
31use crate::Date;
32use crate::{Datelike, Months, TimeDelta, Timelike, Weekday};
33
34#[cfg(any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"))]
35use rkyv::{Archive, Deserialize, Serialize};
36
37#[cfg(feature = "rustc-serialize")]
38pub(super) mod rustc_serialize;
39
40/// documented at re-export site
41#[cfg(feature = "serde")]
42pub(super) mod serde;
43
44#[cfg(test)]
45mod tests;
46
47/// ISO 8601 combined date and time with time zone.
48///
49/// There are some constructors implemented here (the `from_*` methods), but
50/// the general-purpose constructors are all via the methods on the
51/// [`TimeZone`](./offset/trait.TimeZone.html) implementations.
52#[derive(Clone)]
53#[cfg_attr(
54 any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"),
55 derive(Archive, Deserialize, Serialize),
56 archive(compare(PartialEq, PartialOrd))
57)]
58#[cfg_attr(feature = "rkyv-validation", archive(check_bytes))]
59pub struct DateTime<Tz: TimeZone> {
60 datetime: NaiveDateTime,
61 offset: Tz::Offset,
62}
63
64/// The minimum possible `DateTime<Utc>`.
65#[deprecated(since = "0.4.20", note = "Use DateTime::MIN_UTC instead")]
66pub const MIN_DATETIME: DateTime<Utc> = DateTime::<Utc>::MIN_UTC;
67/// The maximum possible `DateTime<Utc>`.
68#[deprecated(since = "0.4.20", note = "Use DateTime::MAX_UTC instead")]
69pub const MAX_DATETIME: DateTime<Utc> = DateTime::<Utc>::MAX_UTC;
70
71impl<Tz: TimeZone> DateTime<Tz> {
72 /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`.
73 ///
74 /// This is a low-level method, intended for use cases such as deserializing a `DateTime` or
75 /// passing it through FFI.
76 ///
77 /// For regular use you will probably want to use a method such as
78 /// [`TimeZone::from_local_datetime`] or [`NaiveDateTime::and_local_timezone`] instead.
79 ///
80 /// # Example
81 ///
82 #[cfg_attr(not(feature = "clock"), doc = "```ignore")]
83 #[cfg_attr(feature = "clock", doc = "```rust")]
84 /// use chrono::{Local, DateTime};
85 ///
86 /// let dt = Local::now();
87 /// // Get components
88 /// let naive_utc = dt.naive_utc();
89 /// let offset = dt.offset().clone();
90 /// // Serialize, pass through FFI... and recreate the `DateTime`:
91 /// let dt_new = DateTime::<Local>::from_naive_utc_and_offset(naive_utc, offset);
92 /// assert_eq!(dt, dt_new);
93 /// ```
94 #[inline]
95 #[must_use]
96 pub const fn from_naive_utc_and_offset(
97 datetime: NaiveDateTime,
98 offset: Tz::Offset,
99 ) -> DateTime<Tz> {
100 DateTime { datetime, offset }
101 }
102
103 /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`.
104 #[inline]
105 #[must_use]
106 #[deprecated(
107 since = "0.4.27",
108 note = "Use TimeZone::from_utc_datetime() or DateTime::from_naive_utc_and_offset instead"
109 )]
110 pub fn from_utc(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> {
111 DateTime { datetime, offset }
112 }
113
114 /// Makes a new `DateTime` from a `NaiveDateTime` in *local* time and an `Offset`.
115 ///
116 /// # Panics
117 ///
118 /// Panics if the local datetime can't be converted to UTC because it would be out of range.
119 ///
120 /// This can happen if `datetime` is near the end of the representable range of `NaiveDateTime`,
121 /// and the offset from UTC pushes it beyond that.
122 #[inline]
123 #[must_use]
124 #[deprecated(
125 since = "0.4.27",
126 note = "Use TimeZone::from_local_datetime() or NaiveDateTime::and_local_timezone instead"
127 )]
128 pub fn from_local(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> {
129 let datetime_utc = datetime - offset.fix();
130
131 DateTime { datetime: datetime_utc, offset }
132 }
133
134 /// Retrieves the date component with an associated timezone.
135 ///
136 /// Unless you are immediately planning on turning this into a `DateTime`
137 /// with the same timezone you should use the [`date_naive`](DateTime::date_naive) method.
138 ///
139 /// [`NaiveDate`] is a more well-defined type, and has more traits implemented on it,
140 /// so should be preferred to [`Date`] any time you truly want to operate on dates.
141 ///
142 /// # Panics
143 ///
144 /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
145 /// method will panic if the offset from UTC would push the local date outside of the
146 /// representable range of a [`Date`].
147 #[inline]
148 #[deprecated(since = "0.4.23", note = "Use `date_naive()` instead")]
149 #[allow(deprecated)]
150 #[must_use]
151 pub fn date(&self) -> Date<Tz> {
152 Date::from_utc(self.naive_local().date(), self.offset.clone())
153 }
154
155 /// Retrieves the date component.
156 ///
157 /// # Panics
158 ///
159 /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
160 /// method will panic if the offset from UTC would push the local date outside of the
161 /// representable range of a [`NaiveDate`].
162 ///
163 /// # Example
164 ///
165 /// ```
166 /// use chrono::prelude::*;
167 ///
168 /// let date: DateTime<Utc> = Utc.with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap();
169 /// let other: DateTime<FixedOffset> = FixedOffset::east_opt(23).unwrap().with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap();
170 /// assert_eq!(date.date_naive(), other.date_naive());
171 /// ```
172 #[inline]
173 #[must_use]
174 pub fn date_naive(&self) -> NaiveDate {
175 let local = self.naive_local();
176 NaiveDate::from_ymd_opt(local.year(), local.month(), local.day()).unwrap()
177 }
178
179 /// Retrieves the time component.
180 #[inline]
181 #[must_use]
182 pub fn time(&self) -> NaiveTime {
183 self.datetime.time() + self.offset.fix()
184 }
185
186 /// Returns the number of non-leap seconds since January 1, 1970 0:00:00 UTC
187 /// (aka "UNIX timestamp").
188 ///
189 /// The reverse operation of creating a [`DateTime`] from a timestamp can be performed
190 /// using [`from_timestamp`](DateTime::from_timestamp) or [`TimeZone::timestamp_opt`].
191 ///
192 /// ```
193 /// use chrono::{DateTime, TimeZone, Utc};
194 ///
195 /// let dt: DateTime<Utc> = Utc.with_ymd_and_hms(2015, 5, 15, 0, 0, 0).unwrap();
196 /// assert_eq!(dt.timestamp(), 1431648000);
197 ///
198 /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt);
199 /// ```
200 #[inline]
201 #[must_use]
202 pub const fn timestamp(&self) -> i64 {
203 self.datetime.timestamp()
204 }
205
206 /// Returns the number of non-leap-milliseconds since January 1, 1970 UTC.
207 ///
208 /// # Example
209 ///
210 /// ```
211 /// use chrono::{Utc, NaiveDate};
212 ///
213 /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_milli_opt(0, 0, 1, 444).unwrap().and_local_timezone(Utc).unwrap();
214 /// assert_eq!(dt.timestamp_millis(), 1_444);
215 ///
216 /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_milli_opt(1, 46, 40, 555).unwrap().and_local_timezone(Utc).unwrap();
217 /// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);
218 /// ```
219 #[inline]
220 #[must_use]
221 pub const fn timestamp_millis(&self) -> i64 {
222 self.datetime.timestamp_millis()
223 }
224
225 /// Returns the number of non-leap-microseconds since January 1, 1970 UTC.
226 ///
227 /// # Example
228 ///
229 /// ```
230 /// use chrono::{Utc, NaiveDate};
231 ///
232 /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_micro_opt(0, 0, 1, 444).unwrap().and_local_timezone(Utc).unwrap();
233 /// assert_eq!(dt.timestamp_micros(), 1_000_444);
234 ///
235 /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_micro_opt(1, 46, 40, 555).unwrap().and_local_timezone(Utc).unwrap();
236 /// assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555);
237 /// ```
238 #[inline]
239 #[must_use]
240 pub const fn timestamp_micros(&self) -> i64 {
241 self.datetime.timestamp_micros()
242 }
243
244 /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC.
245 ///
246 /// # Panics
247 ///
248 /// An `i64` with nanosecond precision can span a range of ~584 years. This function panics on
249 /// an out of range `DateTime`.
250 ///
251 /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192
252 /// and 2262-04-11T23:47:16.854775807.
253 #[deprecated(since = "0.4.31", note = "use `timestamp_nanos_opt()` instead")]
254 #[inline]
255 #[must_use]
256 #[allow(deprecated)]
257 pub const fn timestamp_nanos(&self) -> i64 {
258 self.datetime.timestamp_nanos()
259 }
260
261 /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC.
262 ///
263 /// # Errors
264 ///
265 /// An `i64` with nanosecond precision can span a range of ~584 years. This function returns
266 /// `None` on an out of range `DateTime`.
267 ///
268 /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192
269 /// and 2262-04-11T23:47:16.854775807.
270 ///
271 /// # Example
272 ///
273 /// ```
274 /// use chrono::{Utc, NaiveDate};
275 ///
276 /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1).unwrap().and_hms_nano_opt(0, 0, 1, 444).unwrap().and_local_timezone(Utc).unwrap();
277 /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_444));
278 ///
279 /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9).unwrap().and_hms_nano_opt(1, 46, 40, 555).unwrap().and_local_timezone(Utc).unwrap();
280 /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_000_000_000_555));
281 ///
282 /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21).unwrap().and_hms_nano_opt(0, 12, 43, 145_224_192).unwrap().and_local_timezone(Utc).unwrap();
283 /// assert_eq!(dt.timestamp_nanos_opt(), Some(-9_223_372_036_854_775_808));
284 ///
285 /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11).unwrap().and_hms_nano_opt(23, 47, 16, 854_775_807).unwrap().and_local_timezone(Utc).unwrap();
286 /// assert_eq!(dt.timestamp_nanos_opt(), Some(9_223_372_036_854_775_807));
287 ///
288 /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21).unwrap().and_hms_nano_opt(0, 12, 43, 145_224_191).unwrap().and_local_timezone(Utc).unwrap();
289 /// assert_eq!(dt.timestamp_nanos_opt(), None);
290 ///
291 /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11).unwrap().and_hms_nano_opt(23, 47, 16, 854_775_808).unwrap().and_local_timezone(Utc).unwrap();
292 /// assert_eq!(dt.timestamp_nanos_opt(), None);
293 /// ```
294 #[inline]
295 #[must_use]
296 pub const fn timestamp_nanos_opt(&self) -> Option<i64> {
297 self.datetime.timestamp_nanos_opt()
298 }
299
300 /// Returns the number of milliseconds since the last second boundary.
301 ///
302 /// In event of a leap second this may exceed 999.
303 #[inline]
304 #[must_use]
305 pub const fn timestamp_subsec_millis(&self) -> u32 {
306 self.datetime.timestamp_subsec_millis()
307 }
308
309 /// Returns the number of microseconds since the last second boundary.
310 ///
311 /// In event of a leap second this may exceed 999,999.
312 #[inline]
313 #[must_use]
314 pub const fn timestamp_subsec_micros(&self) -> u32 {
315 self.datetime.timestamp_subsec_micros()
316 }
317
318 /// Returns the number of nanoseconds since the last second boundary
319 ///
320 /// In event of a leap second this may exceed 999,999,999.
321 #[inline]
322 #[must_use]
323 pub const fn timestamp_subsec_nanos(&self) -> u32 {
324 self.datetime.timestamp_subsec_nanos()
325 }
326
327 /// Retrieves an associated offset from UTC.
328 #[inline]
329 #[must_use]
330 pub const fn offset(&self) -> &Tz::Offset {
331 &self.offset
332 }
333
334 /// Retrieves an associated time zone.
335 #[inline]
336 #[must_use]
337 pub fn timezone(&self) -> Tz {
338 TimeZone::from_offset(&self.offset)
339 }
340
341 /// Changes the associated time zone.
342 /// The returned `DateTime` references the same instant of time from the perspective of the
343 /// provided time zone.
344 #[inline]
345 #[must_use]
346 pub fn with_timezone<Tz2: TimeZone>(&self, tz: &Tz2) -> DateTime<Tz2> {
347 tz.from_utc_datetime(&self.datetime)
348 }
349
350 /// Fix the offset from UTC to its current value, dropping the associated timezone information.
351 /// This it useful for converting a generic `DateTime<Tz: Timezone>` to `DateTime<FixedOffset>`.
352 #[inline]
353 #[must_use]
354 pub fn fixed_offset(&self) -> DateTime<FixedOffset> {
355 self.with_timezone(&self.offset().fix())
356 }
357
358 /// Turn this `DateTime` into a `DateTime<Utc>`, dropping the offset and associated timezone
359 /// information.
360 #[inline]
361 #[must_use]
362 pub const fn to_utc(&self) -> DateTime<Utc> {
363 DateTime { datetime: self.datetime, offset: Utc }
364 }
365
366 /// Adds given `TimeDelta` to the current date and time.
367 ///
368 /// # Errors
369 ///
370 /// Returns `None` if the resulting date would be out of range.
371 #[inline]
372 #[must_use]
373 pub fn checked_add_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> {
374 let datetime = self.datetime.checked_add_signed(rhs)?;
375 let tz = self.timezone();
376 Some(tz.from_utc_datetime(&datetime))
377 }
378
379 /// Adds given `Months` to the current date and time.
380 ///
381 /// Uses the last day of the month if the day does not exist in the resulting month.
382 ///
383 /// See [`NaiveDate::checked_add_months`] for more details on behavior.
384 ///
385 /// # Errors
386 ///
387 /// Returns `None` if:
388 /// - The resulting date would be out of range.
389 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
390 /// daylight saving time transition.
391 #[must_use]
392 pub fn checked_add_months(self, rhs: Months) -> Option<DateTime<Tz>> {
393 self.naive_local()
394 .checked_add_months(rhs)?
395 .and_local_timezone(Tz::from_offset(&self.offset))
396 .single()
397 }
398
399 /// Subtracts given `TimeDelta` from the current date and time.
400 ///
401 /// # Errors
402 ///
403 /// Returns `None` if the resulting date would be out of range.
404 #[inline]
405 #[must_use]
406 pub fn checked_sub_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> {
407 let datetime = self.datetime.checked_sub_signed(rhs)?;
408 let tz = self.timezone();
409 Some(tz.from_utc_datetime(&datetime))
410 }
411
412 /// Subtracts given `Months` from the current date and time.
413 ///
414 /// Uses the last day of the month if the day does not exist in the resulting month.
415 ///
416 /// See [`NaiveDate::checked_sub_months`] for more details on behavior.
417 ///
418 /// # Errors
419 ///
420 /// Returns `None` if:
421 /// - The resulting date would be out of range.
422 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
423 /// daylight saving time transition.
424 #[must_use]
425 pub fn checked_sub_months(self, rhs: Months) -> Option<DateTime<Tz>> {
426 self.naive_local()
427 .checked_sub_months(rhs)?
428 .and_local_timezone(Tz::from_offset(&self.offset))
429 .single()
430 }
431
432 /// Add a duration in [`Days`] to the date part of the `DateTime`.
433 ///
434 /// # Errors
435 ///
436 /// Returns `None` if:
437 /// - The resulting date would be out of range.
438 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
439 /// daylight saving time transition.
440 #[must_use]
441 pub fn checked_add_days(self, days: Days) -> Option<Self> {
442 self.naive_local()
443 .checked_add_days(days)?
444 .and_local_timezone(TimeZone::from_offset(&self.offset))
445 .single()
446 }
447
448 /// Subtract a duration in [`Days`] from the date part of the `DateTime`.
449 ///
450 /// # Errors
451 ///
452 /// Returns `None` if:
453 /// - The resulting date would be out of range.
454 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
455 /// daylight saving time transition.
456 #[must_use]
457 pub fn checked_sub_days(self, days: Days) -> Option<Self> {
458 self.naive_local()
459 .checked_sub_days(days)?
460 .and_local_timezone(TimeZone::from_offset(&self.offset))
461 .single()
462 }
463
464 /// Subtracts another `DateTime` from the current date and time.
465 /// This does not overflow or underflow at all.
466 #[inline]
467 #[must_use]
468 pub fn signed_duration_since<Tz2: TimeZone>(
469 self,
470 rhs: impl Borrow<DateTime<Tz2>>,
471 ) -> TimeDelta {
472 self.datetime.signed_duration_since(rhs.borrow().datetime)
473 }
474
475 /// Returns a view to the naive UTC datetime.
476 #[inline]
477 #[must_use]
478 pub const fn naive_utc(&self) -> NaiveDateTime {
479 self.datetime
480 }
481
482 /// Returns a view to the naive local datetime.
483 ///
484 /// # Panics
485 ///
486 /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
487 /// method will panic if the offset from UTC would push the local datetime outside of the
488 /// representable range of a [`NaiveDateTime`].
489 #[inline]
490 #[must_use]
491 pub fn naive_local(&self) -> NaiveDateTime {
492 self.datetime
493 .checked_add_offset(self.offset.fix())
494 .expect("Local time out of range for `NaiveDateTime`")
495 }
496
497 /// Returns the naive local datetime.
498 ///
499 /// This makes use of the buffer space outside of the representable range of values of
500 /// `NaiveDateTime`. The result can be used as intermediate value, but should never be exposed
501 /// outside chrono.
502 #[inline]
503 #[must_use]
504 pub(crate) fn overflowing_naive_local(&self) -> NaiveDateTime {
505 self.datetime.overflowing_add_offset(self.offset.fix())
506 }
507
508 /// Retrieve the elapsed years from now to the given [`DateTime`].
509 ///
510 /// # Errors
511 ///
512 /// Returns `None` if `base < self`.
513 #[must_use]
514 pub fn years_since(&self, base: Self) -> Option<u32> {
515 let mut years = self.year() - base.year();
516 let earlier_time =
517 (self.month(), self.day(), self.time()) < (base.month(), base.day(), base.time());
518
519 years -= match earlier_time {
520 true => 1,
521 false => 0,
522 };
523
524 match years >= 0 {
525 true => Some(years as u32),
526 false => None,
527 }
528 }
529
530 /// Returns an RFC 2822 date and time string such as `Tue, 1 Jul 2003 10:52:37 +0200`.
531 ///
532 /// # Panics
533 ///
534 /// Panics if the date can not be represented in this format: the year may not be negative and
535 /// can not have more than 4 digits.
536 #[cfg(feature = "alloc")]
537 #[must_use]
538 pub fn to_rfc2822(&self) -> String {
539 let mut result = String::with_capacity(32);
540 write_rfc2822(&mut result, self.overflowing_naive_local(), self.offset.fix())
541 .expect("writing rfc2822 datetime to string should never fail");
542 result
543 }
544
545 /// Returns an RFC 3339 and ISO 8601 date and time string such as `1996-12-19T16:39:57-08:00`.
546 #[cfg(feature = "alloc")]
547 #[must_use]
548 pub fn to_rfc3339(&self) -> String {
549 // For some reason a string with a capacity less than 32 is ca 20% slower when benchmarking.
550 let mut result = String::with_capacity(32);
551 let naive = self.overflowing_naive_local();
552 let offset = self.offset.fix();
553 write_rfc3339(&mut result, naive, offset, SecondsFormat::AutoSi, false)
554 .expect("writing rfc3339 datetime to string should never fail");
555 result
556 }
557
558 /// Return an RFC 3339 and ISO 8601 date and time string with subseconds
559 /// formatted as per `SecondsFormat`.
560 ///
561 /// If `use_z` is true and the timezone is UTC (offset 0), uses `Z` as
562 /// per [`Fixed::TimezoneOffsetColonZ`]. If `use_z` is false, uses
563 /// [`Fixed::TimezoneOffsetColon`]
564 ///
565 /// # Examples
566 ///
567 /// ```rust
568 /// # use chrono::{FixedOffset, SecondsFormat, TimeZone, Utc, NaiveDate};
569 /// let dt = NaiveDate::from_ymd_opt(2018, 1, 26).unwrap().and_hms_micro_opt(18, 30, 9, 453_829).unwrap().and_local_timezone(Utc).unwrap();
570 /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, false),
571 /// "2018-01-26T18:30:09.453+00:00");
572 /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, true),
573 /// "2018-01-26T18:30:09.453Z");
574 /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true),
575 /// "2018-01-26T18:30:09Z");
576 ///
577 /// let pst = FixedOffset::east_opt(8 * 60 * 60).unwrap();
578 /// let dt = pst.from_local_datetime(&NaiveDate::from_ymd_opt(2018, 1, 26).unwrap().and_hms_micro_opt(10, 30, 9, 453_829).unwrap()).unwrap();
579 /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true),
580 /// "2018-01-26T10:30:09+08:00");
581 /// ```
582 #[cfg(feature = "alloc")]
583 #[must_use]
584 pub fn to_rfc3339_opts(&self, secform: SecondsFormat, use_z: bool) -> String {
585 let mut result = String::with_capacity(38);
586 write_rfc3339(&mut result, self.naive_local(), self.offset.fix(), secform, use_z)
587 .expect("writing rfc3339 datetime to string should never fail");
588 result
589 }
590
591 /// The minimum possible `DateTime<Utc>`.
592 pub const MIN_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MIN, offset: Utc };
593 /// The maximum possible `DateTime<Utc>`.
594 pub const MAX_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MAX, offset: Utc };
595}
596
597impl DateTime<Utc> {
598 /// Makes a new [`DateTime<Utc>`] from the number of non-leap seconds
599 /// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp")
600 /// and the number of nanoseconds since the last whole non-leap second.
601 ///
602 /// This is guaranteed to round-trip with regard to [`timestamp`](DateTime::timestamp) and
603 /// [`timestamp_subsec_nanos`](DateTime::timestamp_subsec_nanos).
604 ///
605 /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
606 /// [`TimeZone::timestamp_opt`] or [`DateTime::with_timezone`].
607 ///
608 /// The nanosecond part can exceed 1,000,000,000 in order to represent a
609 /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`.
610 /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.)
611 ///
612 /// # Errors
613 ///
614 /// Returns `None` on out-of-range number of seconds and/or
615 /// invalid nanosecond, otherwise returns `Some(DateTime {...})`.
616 ///
617 /// # Example
618 ///
619 /// ```
620 /// use chrono::{DateTime, Utc};
621 ///
622 /// let dt: DateTime<Utc> = DateTime::<Utc>::from_timestamp(1431648000, 0).expect("invalid timestamp");
623 ///
624 /// assert_eq!(dt.to_string(), "2015-05-15 00:00:00 UTC");
625 /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt);
626 /// ```
627 #[inline]
628 #[must_use]
629 pub const fn from_timestamp(secs: i64, nsecs: u32) -> Option<Self> {
630 Some(DateTime {
631 datetime: try_opt!(NaiveDateTime::from_timestamp_opt(secs, nsecs)),
632 offset: Utc,
633 })
634 }
635
636 /// Makes a new [`DateTime<Utc>`] from the number of non-leap milliseconds
637 /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
638 ///
639 /// This is guaranteed to round-trip with regard to [`timestamp_millis`](DateTime::timestamp_millis).
640 ///
641 /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
642 /// [`TimeZone::timestamp_millis_opt`] or [`DateTime::with_timezone`].
643 ///
644 /// # Errors
645 ///
646 /// Returns `None` on out-of-range number of milliseconds, otherwise returns `Some(DateTime {...})`.
647 ///
648 /// # Example
649 ///
650 /// ```
651 /// use chrono::{DateTime, Utc};
652 ///
653 /// let dt: DateTime<Utc> = DateTime::<Utc>::from_timestamp_millis(947638923004).expect("invalid timestamp");
654 ///
655 /// assert_eq!(dt.to_string(), "2000-01-12 01:02:03.004 UTC");
656 /// assert_eq!(DateTime::from_timestamp_millis(dt.timestamp_millis()).unwrap(), dt);
657 /// ```
658 #[inline]
659 #[must_use]
660 pub const fn from_timestamp_millis(millis: i64) -> Option<Self> {
661 Some(try_opt!(NaiveDateTime::from_timestamp_millis(millis)).and_utc())
662 }
663
664 /// The Unix Epoch, 1970-01-01 00:00:00 UTC.
665 pub const UNIX_EPOCH: Self = Self { datetime: NaiveDateTime::UNIX_EPOCH, offset: Utc };
666}
667
668impl Default for DateTime<Utc> {
669 fn default() -> Self {
670 Utc.from_utc_datetime(&NaiveDateTime::default())
671 }
672}
673
674#[cfg(feature = "clock")]
675impl Default for DateTime<Local> {
676 fn default() -> Self {
677 Local.from_utc_datetime(&NaiveDateTime::default())
678 }
679}
680
681impl Default for DateTime<FixedOffset> {
682 fn default() -> Self {
683 FixedOffset::west_opt(0).unwrap().from_utc_datetime(&NaiveDateTime::default())
684 }
685}
686
687/// Convert a `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance.
688impl From<DateTime<Utc>> for DateTime<FixedOffset> {
689 /// Convert this `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance.
690 ///
691 /// Conversion is done via [`DateTime::with_timezone`]. Note that the converted value returned by
692 /// this will be created with a fixed timezone offset of 0.
693 fn from(src: DateTime<Utc>) -> Self {
694 src.with_timezone(&FixedOffset::east_opt(0).unwrap())
695 }
696}
697
698/// Convert a `DateTime<Utc>` instance into a `DateTime<Local>` instance.
699#[cfg(feature = "clock")]
700impl From<DateTime<Utc>> for DateTime<Local> {
701 /// Convert this `DateTime<Utc>` instance into a `DateTime<Local>` instance.
702 ///
703 /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in timezones.
704 fn from(src: DateTime<Utc>) -> Self {
705 src.with_timezone(&Local)
706 }
707}
708
709/// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance.
710impl From<DateTime<FixedOffset>> for DateTime<Utc> {
711 /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance.
712 ///
713 /// Conversion is performed via [`DateTime::with_timezone`], accounting for the timezone
714 /// difference.
715 fn from(src: DateTime<FixedOffset>) -> Self {
716 src.with_timezone(&Utc)
717 }
718}
719
720/// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance.
721#[cfg(feature = "clock")]
722impl From<DateTime<FixedOffset>> for DateTime<Local> {
723 /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance.
724 ///
725 /// Conversion is performed via [`DateTime::with_timezone`]. Returns the equivalent value in local
726 /// time.
727 fn from(src: DateTime<FixedOffset>) -> Self {
728 src.with_timezone(&Local)
729 }
730}
731
732/// Convert a `DateTime<Local>` instance into a `DateTime<Utc>` instance.
733#[cfg(feature = "clock")]
734impl From<DateTime<Local>> for DateTime<Utc> {
735 /// Convert this `DateTime<Local>` instance into a `DateTime<Utc>` instance.
736 ///
737 /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in
738 /// timezones.
739 fn from(src: DateTime<Local>) -> Self {
740 src.with_timezone(&Utc)
741 }
742}
743
744/// Convert a `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance.
745#[cfg(feature = "clock")]
746impl From<DateTime<Local>> for DateTime<FixedOffset> {
747 /// Convert this `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance.
748 ///
749 /// Conversion is performed via [`DateTime::with_timezone`].
750 fn from(src: DateTime<Local>) -> Self {
751 src.with_timezone(&src.offset().fix())
752 }
753}
754
755/// Maps the local datetime to other datetime with given conversion function.
756fn map_local<Tz: TimeZone, F>(dt: &DateTime<Tz>, mut f: F) -> Option<DateTime<Tz>>
757where
758 F: FnMut(NaiveDateTime) -> Option<NaiveDateTime>,
759{
760 f(dt.overflowing_naive_local())
761 .and_then(|datetime| dt.timezone().from_local_datetime(&datetime).single())
762 .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC && dt <= &DateTime::<Utc>::MAX_UTC)
763}
764
765impl DateTime<FixedOffset> {
766 /// Parses an RFC 2822 date-and-time string into a `DateTime<FixedOffset>` value.
767 ///
768 /// This parses valid RFC 2822 datetime strings (such as `Tue, 1 Jul 2003 10:52:37 +0200`)
769 /// and returns a new [`DateTime`] instance with the parsed timezone as the [`FixedOffset`].
770 ///
771 /// RFC 2822 is the internet message standard that specifies the representation of times in HTTP
772 /// and email headers. It is the 2001 revision of RFC 822, and is itself revised as RFC 5322 in
773 /// 2008.
774 ///
775 /// # Support for the obsolete date format
776 ///
777 /// - A 2-digit year is interpreted to be a year in 1950-2049.
778 /// - The standard allows comments and whitespace between many of the tokens. See [4.3] and
779 /// [Appendix A.5]
780 /// - Single letter 'military' time zone names are parsed as a `-0000` offset.
781 /// They were defined with the wrong sign in RFC 822 and corrected in RFC 2822. But because
782 /// the meaning is now ambiguous, the standard says they should be be considered as `-0000`
783 /// unless there is out-of-band information confirming their meaning.
784 /// The exception is `Z`, which remains identical to `+0000`.
785 ///
786 /// [4.3]: https://www.rfc-editor.org/rfc/rfc2822#section-4.3
787 /// [Appendix A.5]: https://www.rfc-editor.org/rfc/rfc2822#appendix-A.5
788 ///
789 /// # Example
790 ///
791 /// ```
792 /// # use chrono::{DateTime, FixedOffset, TimeZone};
793 /// assert_eq!(
794 /// DateTime::parse_from_rfc2822("Wed, 18 Feb 2015 23:16:09 GMT").unwrap(),
795 /// FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap()
796 /// );
797 /// ```
798 pub fn parse_from_rfc2822(s: &str) -> ParseResult<DateTime<FixedOffset>> {
799 const ITEMS: &[Item<'static>] = &[Item::Fixed(Fixed::RFC2822)];
800 let mut parsed = Parsed::new();
801 parse(&mut parsed, s, ITEMS.iter())?;
802 parsed.to_datetime()
803 }
804
805 /// Parses an RFC 3339 date-and-time string into a `DateTime<FixedOffset>` value.
806 ///
807 /// Parses all valid RFC 3339 values (as well as the subset of valid ISO 8601 values that are
808 /// also valid RFC 3339 date-and-time values) and returns a new [`DateTime`] with a
809 /// [`FixedOffset`] corresponding to the parsed timezone. While RFC 3339 values come in a wide
810 /// variety of shapes and sizes, `1996-12-19T16:39:57-08:00` is an example of the most commonly
811 /// encountered variety of RFC 3339 formats.
812 ///
813 /// Why isn't this named `parse_from_iso8601`? That's because ISO 8601 allows representing
814 /// values in a wide range of formats, only some of which represent actual date-and-time
815 /// instances (rather than periods, ranges, dates, or times). Some valid ISO 8601 values are
816 /// also simultaneously valid RFC 3339 values, but not all RFC 3339 values are valid ISO 8601
817 /// values (or the other way around).
818 pub fn parse_from_rfc3339(s: &str) -> ParseResult<DateTime<FixedOffset>> {
819 let mut parsed = Parsed::new();
820 let (s, _) = parse_rfc3339(&mut parsed, s)?;
821 if !s.is_empty() {
822 return Err(TOO_LONG);
823 }
824 parsed.to_datetime()
825 }
826
827 /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value.
828 ///
829 /// Note that this method *requires a timezone* in the input string. See
830 /// [`NaiveDateTime::parse_from_str`](./naive/struct.NaiveDateTime.html#method.parse_from_str)
831 /// for a version that does not require a timezone in the to-be-parsed str. The returned
832 /// [`DateTime`] value will have a [`FixedOffset`] reflecting the parsed timezone.
833 ///
834 /// See the [`format::strftime` module](./format/strftime/index.html) for supported format
835 /// sequences.
836 ///
837 /// # Example
838 ///
839 /// ```rust
840 /// use chrono::{DateTime, FixedOffset, TimeZone, NaiveDate};
841 ///
842 /// let dt = DateTime::parse_from_str(
843 /// "1983 Apr 13 12:09:14.274 +0000", "%Y %b %d %H:%M:%S%.3f %z");
844 /// assert_eq!(dt, Ok(FixedOffset::east_opt(0).unwrap().from_local_datetime(&NaiveDate::from_ymd_opt(1983, 4, 13).unwrap().and_hms_milli_opt(12, 9, 14, 274).unwrap()).unwrap()));
845 /// ```
846 pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<DateTime<FixedOffset>> {
847 let mut parsed = Parsed::new();
848 parse(&mut parsed, s, StrftimeItems::new(fmt))?;
849 parsed.to_datetime()
850 }
851
852 /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value, and a
853 /// slice with the remaining portion of the string.
854 ///
855 /// Note that this method *requires a timezone* in the input string. See
856 /// [`NaiveDateTime::parse_and_remainder`] for a version that does not
857 /// require a timezone in `s`. The returned [`DateTime`] value will have a [`FixedOffset`]
858 /// reflecting the parsed timezone.
859 ///
860 /// See the [`format::strftime` module](./format/strftime/index.html) for supported format
861 /// sequences.
862 ///
863 /// Similar to [`parse_from_str`](#method.parse_from_str).
864 ///
865 /// # Example
866 ///
867 /// ```rust
868 /// # use chrono::{DateTime, FixedOffset, TimeZone};
869 /// let (datetime, remainder) = DateTime::parse_and_remainder(
870 /// "2015-02-18 23:16:09 +0200 trailing text", "%Y-%m-%d %H:%M:%S %z").unwrap();
871 /// assert_eq!(
872 /// datetime,
873 /// FixedOffset::east_opt(2*3600).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap()
874 /// );
875 /// assert_eq!(remainder, " trailing text");
876 /// ```
877 pub fn parse_and_remainder<'a>(
878 s: &'a str,
879 fmt: &str,
880 ) -> ParseResult<(DateTime<FixedOffset>, &'a str)> {
881 let mut parsed = Parsed::new();
882 let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?;
883 parsed.to_datetime().map(|d| (d, remainder))
884 }
885}
886
887impl<Tz: TimeZone> DateTime<Tz>
888where
889 Tz::Offset: fmt::Display,
890{
891 /// Formats the combined date and time with the specified formatting items.
892 #[cfg(feature = "alloc")]
893 #[inline]
894 #[must_use]
895 pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
896 where
897 I: Iterator<Item = B> + Clone,
898 B: Borrow<Item<'a>>,
899 {
900 let local = self.overflowing_naive_local();
901 DelayedFormat::new_with_offset(Some(local.date()), Some(local.time()), &self.offset, items)
902 }
903
904 /// Formats the combined date and time per the specified format string.
905 ///
906 /// See the [`crate::format::strftime`] module for the supported escape sequences.
907 ///
908 /// # Example
909 /// ```rust
910 /// use chrono::prelude::*;
911 ///
912 /// let date_time: DateTime<Utc> = Utc.with_ymd_and_hms(2017, 04, 02, 12, 50, 32).unwrap();
913 /// let formatted = format!("{}", date_time.format("%d/%m/%Y %H:%M"));
914 /// assert_eq!(formatted, "02/04/2017 12:50");
915 /// ```
916 #[cfg(feature = "alloc")]
917 #[inline]
918 #[must_use]
919 pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> {
920 self.format_with_items(StrftimeItems::new(fmt))
921 }
922
923 /// Formats the combined date and time with the specified formatting items and locale.
924 #[cfg(all(feature = "unstable-locales", feature = "alloc"))]
925 #[inline]
926 #[must_use]
927 pub fn format_localized_with_items<'a, I, B>(
928 &self,
929 items: I,
930 locale: Locale,
931 ) -> DelayedFormat<I>
932 where
933 I: Iterator<Item = B> + Clone,
934 B: Borrow<Item<'a>>,
935 {
936 let local = self.overflowing_naive_local();
937 DelayedFormat::new_with_offset_and_locale(
938 Some(local.date()),
939 Some(local.time()),
940 &self.offset,
941 items,
942 locale,
943 )
944 }
945
946 /// Formats the combined date and time per the specified format string and
947 /// locale.
948 ///
949 /// See the [`crate::format::strftime`] module on the supported escape
950 /// sequences.
951 #[cfg(all(feature = "unstable-locales", feature = "alloc"))]
952 #[inline]
953 #[must_use]
954 pub fn format_localized<'a>(
955 &self,
956 fmt: &'a str,
957 locale: Locale,
958 ) -> DelayedFormat<StrftimeItems<'a>> {
959 self.format_localized_with_items(StrftimeItems::new_with_locale(fmt, locale), locale)
960 }
961}
962
963impl<Tz: TimeZone> Datelike for DateTime<Tz> {
964 #[inline]
965 fn year(&self) -> i32 {
966 self.overflowing_naive_local().year()
967 }
968 #[inline]
969 fn month(&self) -> u32 {
970 self.overflowing_naive_local().month()
971 }
972 #[inline]
973 fn month0(&self) -> u32 {
974 self.overflowing_naive_local().month0()
975 }
976 #[inline]
977 fn day(&self) -> u32 {
978 self.overflowing_naive_local().day()
979 }
980 #[inline]
981 fn day0(&self) -> u32 {
982 self.overflowing_naive_local().day0()
983 }
984 #[inline]
985 fn ordinal(&self) -> u32 {
986 self.overflowing_naive_local().ordinal()
987 }
988 #[inline]
989 fn ordinal0(&self) -> u32 {
990 self.overflowing_naive_local().ordinal0()
991 }
992 #[inline]
993 fn weekday(&self) -> Weekday {
994 self.overflowing_naive_local().weekday()
995 }
996 #[inline]
997 fn iso_week(&self) -> IsoWeek {
998 self.overflowing_naive_local().iso_week()
999 }
1000
1001 #[inline]
1002 /// Makes a new `DateTime` with the year number changed, while keeping the same month and day.
1003 ///
1004 /// See also the [`NaiveDate::with_year`] method.
1005 ///
1006 /// # Errors
1007 ///
1008 /// Returns `None` if:
1009 /// - The resulting date does not exist.
1010 /// - When the `NaiveDateTime` would be out of range.
1011 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1012 /// daylight saving time transition.
1013 fn with_year(&self, year: i32) -> Option<DateTime<Tz>> {
1014 map_local(self, |datetime| datetime.with_year(year))
1015 }
1016
1017 /// Makes a new `DateTime` with the month number (starting from 1) changed.
1018 ///
1019 /// See also the [`NaiveDate::with_month`] method.
1020 ///
1021 /// # Errors
1022 ///
1023 /// Returns `None` if:
1024 /// - The resulting date does not exist.
1025 /// - The value for `month` is invalid.
1026 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1027 /// daylight saving time transition.
1028 #[inline]
1029 fn with_month(&self, month: u32) -> Option<DateTime<Tz>> {
1030 map_local(self, |datetime| datetime.with_month(month))
1031 }
1032
1033 /// Makes a new `DateTime` with the month number (starting from 0) changed.
1034 ///
1035 /// See also the [`NaiveDate::with_month0`] method.
1036 ///
1037 /// # Errors
1038 ///
1039 /// Returns `None` if:
1040 /// - The resulting date does not exist.
1041 /// - The value for `month0` is invalid.
1042 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1043 /// daylight saving time transition.
1044 #[inline]
1045 fn with_month0(&self, month0: u32) -> Option<DateTime<Tz>> {
1046 map_local(self, |datetime| datetime.with_month0(month0))
1047 }
1048
1049 /// Makes a new `DateTime` with the day of month (starting from 1) changed.
1050 ///
1051 /// See also the [`NaiveDate::with_day`] method.
1052 ///
1053 /// # Errors
1054 ///
1055 /// Returns `None` if:
1056 /// - The resulting date does not exist.
1057 /// - The value for `day` is invalid.
1058 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1059 /// daylight saving time transition.
1060 #[inline]
1061 fn with_day(&self, day: u32) -> Option<DateTime<Tz>> {
1062 map_local(self, |datetime| datetime.with_day(day))
1063 }
1064
1065 /// Makes a new `DateTime` with the day of month (starting from 0) changed.
1066 ///
1067 /// See also the [`NaiveDate::with_day0`] method.
1068 ///
1069 /// # Errors
1070 ///
1071 /// Returns `None` if:
1072 /// - The resulting date does not exist.
1073 /// - The value for `day0` is invalid.
1074 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1075 /// daylight saving time transition.
1076 #[inline]
1077 fn with_day0(&self, day0: u32) -> Option<DateTime<Tz>> {
1078 map_local(self, |datetime| datetime.with_day0(day0))
1079 }
1080
1081 /// Makes a new `DateTime` with the day of year (starting from 1) changed.
1082 ///
1083 /// See also the [`NaiveDate::with_ordinal`] method.
1084 ///
1085 /// # Errors
1086 ///
1087 /// Returns `None` if:
1088 /// - The resulting date does not exist.
1089 /// - The value for `ordinal` is invalid.
1090 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1091 /// daylight saving time transition.
1092 #[inline]
1093 fn with_ordinal(&self, ordinal: u32) -> Option<DateTime<Tz>> {
1094 map_local(self, |datetime| datetime.with_ordinal(ordinal))
1095 }
1096
1097 /// Makes a new `DateTime` with the day of year (starting from 0) changed.
1098 ///
1099 /// See also the [`NaiveDate::with_ordinal0`] method.
1100 ///
1101 /// # Errors
1102 ///
1103 /// Returns `None` if:
1104 /// - The resulting date does not exist.
1105 /// - The value for `ordinal0` is invalid.
1106 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1107 /// daylight saving time transition.
1108 #[inline]
1109 fn with_ordinal0(&self, ordinal0: u32) -> Option<DateTime<Tz>> {
1110 map_local(self, |datetime| datetime.with_ordinal0(ordinal0))
1111 }
1112}
1113
1114impl<Tz: TimeZone> Timelike for DateTime<Tz> {
1115 #[inline]
1116 fn hour(&self) -> u32 {
1117 self.overflowing_naive_local().hour()
1118 }
1119 #[inline]
1120 fn minute(&self) -> u32 {
1121 self.overflowing_naive_local().minute()
1122 }
1123 #[inline]
1124 fn second(&self) -> u32 {
1125 self.overflowing_naive_local().second()
1126 }
1127 #[inline]
1128 fn nanosecond(&self) -> u32 {
1129 self.overflowing_naive_local().nanosecond()
1130 }
1131
1132 /// Makes a new `DateTime` with the hour number changed.
1133 ///
1134 /// See also the [`NaiveTime::with_hour`] method.
1135 ///
1136 /// # Errors
1137 ///
1138 /// Returns `None` if:
1139 /// - The value for `hour` is invalid.
1140 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1141 /// daylight saving time transition.
1142 #[inline]
1143 fn with_hour(&self, hour: u32) -> Option<DateTime<Tz>> {
1144 map_local(self, |datetime| datetime.with_hour(hour))
1145 }
1146
1147 /// Makes a new `DateTime` with the minute number changed.
1148 ///
1149 /// See also the [`NaiveTime::with_minute`] method.
1150 ///
1151 /// # Errors
1152 ///
1153 /// - The value for `minute` is invalid.
1154 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1155 /// daylight saving time transition.
1156 #[inline]
1157 fn with_minute(&self, min: u32) -> Option<DateTime<Tz>> {
1158 map_local(self, |datetime| datetime.with_minute(min))
1159 }
1160
1161 /// Makes a new `DateTime` with the second number changed.
1162 ///
1163 /// As with the [`second`](#method.second) method,
1164 /// the input range is restricted to 0 through 59.
1165 ///
1166 /// See also the [`NaiveTime::with_second`] method.
1167 ///
1168 /// # Errors
1169 ///
1170 /// Returns `None` if:
1171 /// - The value for `second` is invalid.
1172 /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1173 /// daylight saving time transition.
1174 #[inline]
1175 fn with_second(&self, sec: u32) -> Option<DateTime<Tz>> {
1176 map_local(self, |datetime| datetime.with_second(sec))
1177 }
1178
1179 /// Makes a new `DateTime` with nanoseconds since the whole non-leap second changed.
1180 ///
1181 /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
1182 /// As with the [`NaiveDateTime::nanosecond`] method,
1183 /// the input range can exceed 1,000,000,000 for leap seconds.
1184 ///
1185 /// See also the [`NaiveTime::with_nanosecond`] method.
1186 ///
1187 /// # Errors
1188 ///
1189 /// Returns `None` if `nanosecond >= 2,000,000,000`.
1190 #[inline]
1191 fn with_nanosecond(&self, nano: u32) -> Option<DateTime<Tz>> {
1192 map_local(self, |datetime| datetime.with_nanosecond(nano))
1193 }
1194}
1195
1196// we need them as automatic impls cannot handle associated types
1197impl<Tz: TimeZone> Copy for DateTime<Tz> where <Tz as TimeZone>::Offset: Copy {}
1198unsafe impl<Tz: TimeZone> Send for DateTime<Tz> where <Tz as TimeZone>::Offset: Send {}
1199
1200impl<Tz: TimeZone, Tz2: TimeZone> PartialEq<DateTime<Tz2>> for DateTime<Tz> {
1201 fn eq(&self, other: &DateTime<Tz2>) -> bool {
1202 self.datetime == other.datetime
1203 }
1204}
1205
1206impl<Tz: TimeZone> Eq for DateTime<Tz> {}
1207
1208impl<Tz: TimeZone, Tz2: TimeZone> PartialOrd<DateTime<Tz2>> for DateTime<Tz> {
1209 /// Compare two DateTimes based on their true time, ignoring time zones
1210 ///
1211 /// # Example
1212 ///
1213 /// ```
1214 /// use chrono::prelude::*;
1215 ///
1216 /// let earlier = Utc.with_ymd_and_hms(2015, 5, 15, 2, 0, 0).unwrap().with_timezone(&FixedOffset::west_opt(1 * 3600).unwrap());
1217 /// let later = Utc.with_ymd_and_hms(2015, 5, 15, 3, 0, 0).unwrap().with_timezone(&FixedOffset::west_opt(5 * 3600).unwrap());
1218 ///
1219 /// assert_eq!(earlier.to_string(), "2015-05-15 01:00:00 -01:00");
1220 /// assert_eq!(later.to_string(), "2015-05-14 22:00:00 -05:00");
1221 ///
1222 /// assert!(later > earlier);
1223 /// ```
1224 fn partial_cmp(&self, other: &DateTime<Tz2>) -> Option<Ordering> {
1225 self.datetime.partial_cmp(&other.datetime)
1226 }
1227}
1228
1229impl<Tz: TimeZone> Ord for DateTime<Tz> {
1230 fn cmp(&self, other: &DateTime<Tz>) -> Ordering {
1231 self.datetime.cmp(&other.datetime)
1232 }
1233}
1234
1235impl<Tz: TimeZone> hash::Hash for DateTime<Tz> {
1236 fn hash<H: hash::Hasher>(&self, state: &mut H) {
1237 self.datetime.hash(state)
1238 }
1239}
1240
1241/// Add `TimeDelta` to `DateTime`.
1242///
1243/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1244/// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case
1245/// the assumption becomes that **there is exactly a single leap second ever**.
1246///
1247/// # Panics
1248///
1249/// Panics if the resulting date would be out of range.
1250/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1251impl<Tz: TimeZone> Add<TimeDelta> for DateTime<Tz> {
1252 type Output = DateTime<Tz>;
1253
1254 #[inline]
1255 fn add(self, rhs: TimeDelta) -> DateTime<Tz> {
1256 self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed")
1257 }
1258}
1259
1260/// Add `std::time::Duration` to `DateTime`.
1261///
1262/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1263/// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case
1264/// the assumption becomes that **there is exactly a single leap second ever**.
1265///
1266/// # Panics
1267///
1268/// Panics if the resulting date would be out of range.
1269/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1270impl<Tz: TimeZone> Add<Duration> for DateTime<Tz> {
1271 type Output = DateTime<Tz>;
1272
1273 #[inline]
1274 fn add(self, rhs: Duration) -> DateTime<Tz> {
1275 let rhs = TimeDelta::from_std(rhs)
1276 .expect("overflow converting from core::time::Duration to TimeDelta");
1277 self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed")
1278 }
1279}
1280
1281/// Add-assign `chrono::Duration` to `DateTime`.
1282///
1283/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1284/// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case
1285/// the assumption becomes that **there is exactly a single leap second ever**.
1286///
1287/// # Panics
1288///
1289/// Panics if the resulting date would be out of range.
1290/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1291impl<Tz: TimeZone> AddAssign<TimeDelta> for DateTime<Tz> {
1292 #[inline]
1293 fn add_assign(&mut self, rhs: TimeDelta) {
1294 let datetime =
1295 self.datetime.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed");
1296 let tz = self.timezone();
1297 *self = tz.from_utc_datetime(&datetime);
1298 }
1299}
1300
1301/// Add-assign `std::time::Duration` to `DateTime`.
1302///
1303/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1304/// second ever**, except when the `NaiveDateTime` itself represents a leap second in which case
1305/// the assumption becomes that **there is exactly a single leap second ever**.
1306///
1307/// # Panics
1308///
1309/// Panics if the resulting date would be out of range.
1310/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1311impl<Tz: TimeZone> AddAssign<Duration> for DateTime<Tz> {
1312 #[inline]
1313 fn add_assign(&mut self, rhs: Duration) {
1314 let rhs = TimeDelta::from_std(rhs)
1315 .expect("overflow converting from core::time::Duration to TimeDelta");
1316 *self += rhs;
1317 }
1318}
1319
1320/// Add `FixedOffset` to the datetime value of `DateTime` (offset remains unchanged).
1321///
1322/// # Panics
1323///
1324/// Panics if the resulting date would be out of range.
1325impl<Tz: TimeZone> Add<FixedOffset> for DateTime<Tz> {
1326 type Output = DateTime<Tz>;
1327
1328 #[inline]
1329 fn add(mut self, rhs: FixedOffset) -> DateTime<Tz> {
1330 self.datetime =
1331 self.naive_utc().checked_add_offset(rhs).expect("`DateTime + FixedOffset` overflowed");
1332 self
1333 }
1334}
1335
1336/// Add `Months` to `DateTime`.
1337///
1338/// The result will be clamped to valid days in the resulting month, see `checked_add_months` for
1339/// details.
1340///
1341/// # Panics
1342///
1343/// Panics if:
1344/// - The resulting date would be out of range.
1345/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1346/// daylight saving time transition.
1347///
1348/// Strongly consider using [`DateTime<Tz>::checked_add_months`] to get an `Option` instead.
1349impl<Tz: TimeZone> Add<Months> for DateTime<Tz> {
1350 type Output = DateTime<Tz>;
1351
1352 fn add(self, rhs: Months) -> Self::Output {
1353 self.checked_add_months(rhs).expect("`DateTime + Months` out of range")
1354 }
1355}
1356
1357/// Subtract `TimeDelta` from `DateTime`.
1358///
1359/// This is the same as the addition with a negated `TimeDelta`.
1360///
1361/// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap
1362/// second ever**, except when the `DateTime` itself represents a leap second in which case
1363/// the assumption becomes that **there is exactly a single leap second ever**.
1364///
1365/// # Panics
1366///
1367/// Panics if the resulting date would be out of range.
1368/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1369impl<Tz: TimeZone> Sub<TimeDelta> for DateTime<Tz> {
1370 type Output = DateTime<Tz>;
1371
1372 #[inline]
1373 fn sub(self, rhs: TimeDelta) -> DateTime<Tz> {
1374 self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed")
1375 }
1376}
1377
1378/// Subtract `std::time::Duration` from `DateTime`.
1379///
1380/// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap
1381/// second ever**, except when the `DateTime` itself represents a leap second in which case
1382/// the assumption becomes that **there is exactly a single leap second ever**.
1383///
1384/// # Panics
1385///
1386/// Panics if the resulting date would be out of range.
1387/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1388impl<Tz: TimeZone> Sub<Duration> for DateTime<Tz> {
1389 type Output = DateTime<Tz>;
1390
1391 #[inline]
1392 fn sub(self, rhs: Duration) -> DateTime<Tz> {
1393 let rhs = TimeDelta::from_std(rhs)
1394 .expect("overflow converting from core::time::Duration to TimeDelta");
1395 self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed")
1396 }
1397}
1398
1399/// Subtract-assign `TimeDelta` from `DateTime`.
1400///
1401/// This is the same as the addition with a negated `TimeDelta`.
1402///
1403/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1404/// second ever**, except when the `DateTime` itself represents a leap second in which case
1405/// the assumption becomes that **there is exactly a single leap second ever**.
1406///
1407/// # Panics
1408///
1409/// Panics if the resulting date would be out of range.
1410/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1411impl<Tz: TimeZone> SubAssign<TimeDelta> for DateTime<Tz> {
1412 #[inline]
1413 fn sub_assign(&mut self, rhs: TimeDelta) {
1414 let datetime =
1415 self.datetime.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed");
1416 let tz = self.timezone();
1417 *self = tz.from_utc_datetime(&datetime)
1418 }
1419}
1420
1421/// Subtract-assign `std::time::Duration` from `DateTime`.
1422///
1423/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1424/// second ever**, except when the `DateTime` itself represents a leap second in which case
1425/// the assumption becomes that **there is exactly a single leap second ever**.
1426///
1427/// # Panics
1428///
1429/// Panics if the resulting date would be out of range.
1430/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1431impl<Tz: TimeZone> SubAssign<Duration> for DateTime<Tz> {
1432 #[inline]
1433 fn sub_assign(&mut self, rhs: Duration) {
1434 let rhs = TimeDelta::from_std(rhs)
1435 .expect("overflow converting from core::time::Duration to TimeDelta");
1436 *self -= rhs;
1437 }
1438}
1439
1440/// Subtract `FixedOffset` from the datetime value of `DateTime` (offset remains unchanged).
1441///
1442/// # Panics
1443///
1444/// Panics if the resulting date would be out of range.
1445impl<Tz: TimeZone> Sub<FixedOffset> for DateTime<Tz> {
1446 type Output = DateTime<Tz>;
1447
1448 #[inline]
1449 fn sub(mut self, rhs: FixedOffset) -> DateTime<Tz> {
1450 self.datetime =
1451 self.naive_utc().checked_sub_offset(rhs).expect("`DateTime - FixedOffset` overflowed");
1452 self
1453 }
1454}
1455
1456/// Subtract `Months` from `DateTime`.
1457///
1458/// The result will be clamped to valid days in the resulting month, see
1459/// [`DateTime<Tz>::checked_sub_months`] for details.
1460///
1461/// # Panics
1462///
1463/// Panics if:
1464/// - The resulting date would be out of range.
1465/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1466/// daylight saving time transition.
1467///
1468/// Strongly consider using [`DateTime<Tz>::checked_sub_months`] to get an `Option` instead.
1469impl<Tz: TimeZone> Sub<Months> for DateTime<Tz> {
1470 type Output = DateTime<Tz>;
1471
1472 fn sub(self, rhs: Months) -> Self::Output {
1473 self.checked_sub_months(rhs).expect("`DateTime - Months` out of range")
1474 }
1475}
1476
1477impl<Tz: TimeZone> Sub<DateTime<Tz>> for DateTime<Tz> {
1478 type Output = TimeDelta;
1479
1480 #[inline]
1481 fn sub(self, rhs: DateTime<Tz>) -> TimeDelta {
1482 self.signed_duration_since(rhs)
1483 }
1484}
1485
1486impl<Tz: TimeZone> Sub<&DateTime<Tz>> for DateTime<Tz> {
1487 type Output = TimeDelta;
1488
1489 #[inline]
1490 fn sub(self, rhs: &DateTime<Tz>) -> TimeDelta {
1491 self.signed_duration_since(rhs)
1492 }
1493}
1494
1495/// Add `Days` to `NaiveDateTime`.
1496///
1497/// # Panics
1498///
1499/// Panics if:
1500/// - The resulting date would be out of range.
1501/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1502/// daylight saving time transition.
1503///
1504/// Strongly consider using `DateTime<Tz>::checked_sub_days` to get an `Option` instead.
1505impl<Tz: TimeZone> Add<Days> for DateTime<Tz> {
1506 type Output = DateTime<Tz>;
1507
1508 fn add(self, days: Days) -> Self::Output {
1509 self.checked_add_days(days).expect("`DateTime + Days` out of range")
1510 }
1511}
1512
1513/// Subtract `Days` from `DateTime`.
1514///
1515/// # Panics
1516///
1517/// Panics if:
1518/// - The resulting date would be out of range.
1519/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1520/// daylight saving time transition.
1521///
1522/// Strongly consider using `DateTime<Tz>::checked_sub_days` to get an `Option` instead.
1523impl<Tz: TimeZone> Sub<Days> for DateTime<Tz> {
1524 type Output = DateTime<Tz>;
1525
1526 fn sub(self, days: Days) -> Self::Output {
1527 self.checked_sub_days(days).expect("`DateTime - Days` out of range")
1528 }
1529}
1530
1531impl<Tz: TimeZone> fmt::Debug for DateTime<Tz> {
1532 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1533 self.overflowing_naive_local().fmt(f)?;
1534 self.offset.fmt(f)
1535 }
1536}
1537
1538// `fmt::Debug` is hand implemented for the `rkyv::Archive` variant of `DateTime` because
1539// deriving a trait recursively does not propagate trait defined associated types with their own
1540// constraints:
1541// In our case `<<Tz as offset::TimeZone>::Offset as Archive>::Archived`
1542// cannot be formatted using `{:?}` because it doesn't implement `Debug`.
1543// See below for further discussion:
1544// * https://github.com/rust-lang/rust/issues/26925
1545// * https://github.com/rkyv/rkyv/issues/333
1546// * https://github.com/dtolnay/syn/issues/370
1547#[cfg(feature = "rkyv-validation")]
1548impl<Tz: TimeZone> fmt::Debug for ArchivedDateTime<Tz>
1549where
1550 Tz: Archive,
1551 <Tz as Archive>::Archived: fmt::Debug,
1552 <<Tz as TimeZone>::Offset as Archive>::Archived: fmt::Debug,
1553 <Tz as TimeZone>::Offset: fmt::Debug + Archive,
1554{
1555 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1556 f.debug_struct("ArchivedDateTime")
1557 .field("datetime", &self.datetime)
1558 .field("offset", &self.offset)
1559 .finish()
1560 }
1561}
1562
1563impl<Tz: TimeZone> fmt::Display for DateTime<Tz>
1564where
1565 Tz::Offset: fmt::Display,
1566{
1567 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1568 self.overflowing_naive_local().fmt(f)?;
1569 f.write_char(' ')?;
1570 self.offset.fmt(f)
1571 }
1572}
1573
1574/// Accepts a relaxed form of RFC3339.
1575/// A space or a 'T' are accepted as the separator between the date and time
1576/// parts.
1577///
1578/// All of these examples are equivalent:
1579/// ```
1580/// # use chrono::{DateTime, Utc};
1581/// "2012-12-12T12:12:12Z".parse::<DateTime<Utc>>()?;
1582/// "2012-12-12 12:12:12Z".parse::<DateTime<Utc>>()?;
1583/// "2012-12-12 12:12:12+0000".parse::<DateTime<Utc>>()?;
1584/// "2012-12-12 12:12:12+00:00".parse::<DateTime<Utc>>()?;
1585/// # Ok::<(), chrono::ParseError>(())
1586/// ```
1587impl str::FromStr for DateTime<Utc> {
1588 type Err = ParseError;
1589
1590 fn from_str(s: &str) -> ParseResult<DateTime<Utc>> {
1591 s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Utc))
1592 }
1593}
1594
1595/// Accepts a relaxed form of RFC3339.
1596/// A space or a 'T' are accepted as the separator between the date and time
1597/// parts.
1598///
1599/// All of these examples are equivalent:
1600/// ```
1601/// # use chrono::{DateTime, Local};
1602/// "2012-12-12T12:12:12Z".parse::<DateTime<Local>>()?;
1603/// "2012-12-12 12:12:12Z".parse::<DateTime<Local>>()?;
1604/// "2012-12-12 12:12:12+0000".parse::<DateTime<Local>>()?;
1605/// "2012-12-12 12:12:12+00:00".parse::<DateTime<Local>>()?;
1606/// # Ok::<(), chrono::ParseError>(())
1607/// ```
1608#[cfg(feature = "clock")]
1609impl str::FromStr for DateTime<Local> {
1610 type Err = ParseError;
1611
1612 fn from_str(s: &str) -> ParseResult<DateTime<Local>> {
1613 s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Local))
1614 }
1615}
1616
1617#[cfg(feature = "std")]
1618impl From<SystemTime> for DateTime<Utc> {
1619 fn from(t: SystemTime) -> DateTime<Utc> {
1620 let (sec, nsec) = match t.duration_since(UNIX_EPOCH) {
1621 Ok(dur) => (dur.as_secs() as i64, dur.subsec_nanos()),
1622 Err(e) => {
1623 // unlikely but should be handled
1624 let dur = e.duration();
1625 let (sec, nsec) = (dur.as_secs() as i64, dur.subsec_nanos());
1626 if nsec == 0 {
1627 (-sec, 0)
1628 } else {
1629 (-sec - 1, 1_000_000_000 - nsec)
1630 }
1631 }
1632 };
1633 Utc.timestamp_opt(sec, nsec).unwrap()
1634 }
1635}
1636
1637#[cfg(feature = "clock")]
1638impl From<SystemTime> for DateTime<Local> {
1639 fn from(t: SystemTime) -> DateTime<Local> {
1640 DateTime::<Utc>::from(t).with_timezone(&Local)
1641 }
1642}
1643
1644#[cfg(feature = "std")]
1645impl<Tz: TimeZone> From<DateTime<Tz>> for SystemTime {
1646 fn from(dt: DateTime<Tz>) -> SystemTime {
1647 let sec = dt.timestamp();
1648 let nsec = dt.timestamp_subsec_nanos();
1649 if sec < 0 {
1650 // unlikely but should be handled
1651 UNIX_EPOCH - Duration::new(-sec as u64, 0) + Duration::new(0, nsec)
1652 } else {
1653 UNIX_EPOCH + Duration::new(sec as u64, nsec)
1654 }
1655 }
1656}
1657
1658#[cfg(all(
1659 target_arch = "wasm32",
1660 feature = "wasmbind",
1661 not(any(target_os = "emscripten", target_os = "wasi"))
1662))]
1663impl From<js_sys::Date> for DateTime<Utc> {
1664 fn from(date: js_sys::Date) -> DateTime<Utc> {
1665 DateTime::<Utc>::from(&date)
1666 }
1667}
1668
1669#[cfg(all(
1670 target_arch = "wasm32",
1671 feature = "wasmbind",
1672 not(any(target_os = "emscripten", target_os = "wasi"))
1673))]
1674impl From<&js_sys::Date> for DateTime<Utc> {
1675 fn from(date: &js_sys::Date) -> DateTime<Utc> {
1676 Utc.timestamp_millis_opt(date.get_time() as i64).unwrap()
1677 }
1678}
1679
1680#[cfg(all(
1681 target_arch = "wasm32",
1682 feature = "wasmbind",
1683 not(any(target_os = "emscripten", target_os = "wasi"))
1684))]
1685impl From<DateTime<Utc>> for js_sys::Date {
1686 /// Converts a `DateTime<Utc>` to a JS `Date`. The resulting value may be lossy,
1687 /// any values that have a millisecond timestamp value greater/less than ±8,640,000,000,000,000
1688 /// (April 20, 271821 BCE ~ September 13, 275760 CE) will become invalid dates in JS.
1689 fn from(date: DateTime<Utc>) -> js_sys::Date {
1690 let js_millis = wasm_bindgen::JsValue::from_f64(date.timestamp_millis() as f64);
1691 js_sys::Date::new(&js_millis)
1692 }
1693}
1694
1695// Note that implementation of Arbitrary cannot be simply derived for DateTime<Tz>, due to
1696// the nontrivial bound <Tz as TimeZone>::Offset: Arbitrary.
1697#[cfg(all(feature = "arbitrary", feature = "std"))]
1698impl<'a, Tz> arbitrary::Arbitrary<'a> for DateTime<Tz>
1699where
1700 Tz: TimeZone,
1701 <Tz as TimeZone>::Offset: arbitrary::Arbitrary<'a>,
1702{
1703 fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<DateTime<Tz>> {
1704 let datetime = NaiveDateTime::arbitrary(u)?;
1705 let offset = <Tz as TimeZone>::Offset::arbitrary(u)?;
1706 Ok(DateTime::from_naive_utc_and_offset(datetime, offset))
1707 }
1708}
1709
1710#[cfg(all(test, any(feature = "rustc-serialize", feature = "serde")))]
1711fn test_encodable_json<FUtc, FFixed, E>(to_string_utc: FUtc, to_string_fixed: FFixed)
1712where
1713 FUtc: Fn(&DateTime<Utc>) -> Result<String, E>,
1714 FFixed: Fn(&DateTime<FixedOffset>) -> Result<String, E>,
1715 E: ::core::fmt::Debug,
1716{
1717 assert_eq!(
1718 to_string_utc(&Utc.with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap()).ok(),
1719 Some(r#""2014-07-24T12:34:06Z""#.into())
1720 );
1721
1722 assert_eq!(
1723 to_string_fixed(
1724 &FixedOffset::east_opt(3660).unwrap().with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap()
1725 )
1726 .ok(),
1727 Some(r#""2014-07-24T12:34:06+01:01""#.into())
1728 );
1729 assert_eq!(
1730 to_string_fixed(
1731 &FixedOffset::east_opt(3650).unwrap().with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap()
1732 )
1733 .ok(),
1734 // An offset with seconds is not allowed by RFC 3339, so we round it to the nearest minute.
1735 // In this case `+01:00:50` becomes `+01:01`
1736 Some(r#""2014-07-24T12:34:06+01:01""#.into())
1737 );
1738}
1739
1740#[cfg(all(test, feature = "clock", any(feature = "rustc-serialize", feature = "serde")))]
1741fn test_decodable_json<FUtc, FFixed, FLocal, E>(
1742 utc_from_str: FUtc,
1743 fixed_from_str: FFixed,
1744 local_from_str: FLocal,
1745) where
1746 FUtc: Fn(&str) -> Result<DateTime<Utc>, E>,
1747 FFixed: Fn(&str) -> Result<DateTime<FixedOffset>, E>,
1748 FLocal: Fn(&str) -> Result<DateTime<Local>, E>,
1749 E: ::core::fmt::Debug,
1750{
1751 // should check against the offset as well (the normal DateTime comparison will ignore them)
1752 fn norm<Tz: TimeZone>(dt: &Option<DateTime<Tz>>) -> Option<(&DateTime<Tz>, &Tz::Offset)> {
1753 dt.as_ref().map(|dt| (dt, dt.offset()))
1754 }
1755
1756 assert_eq!(
1757 norm(&utc_from_str(r#""2014-07-24T12:34:06Z""#).ok()),
1758 norm(&Some(Utc.with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap()))
1759 );
1760 assert_eq!(
1761 norm(&utc_from_str(r#""2014-07-24T13:57:06+01:23""#).ok()),
1762 norm(&Some(Utc.with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap()))
1763 );
1764
1765 assert_eq!(
1766 norm(&fixed_from_str(r#""2014-07-24T12:34:06Z""#).ok()),
1767 norm(&Some(
1768 FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap()
1769 ))
1770 );
1771 assert_eq!(
1772 norm(&fixed_from_str(r#""2014-07-24T13:57:06+01:23""#).ok()),
1773 norm(&Some(
1774 FixedOffset::east_opt(60 * 60 + 23 * 60)
1775 .unwrap()
1776 .with_ymd_and_hms(2014, 7, 24, 13, 57, 6)
1777 .unwrap()
1778 ))
1779 );
1780
1781 // we don't know the exact local offset but we can check that
1782 // the conversion didn't change the instant itself
1783 assert_eq!(
1784 local_from_str(r#""2014-07-24T12:34:06Z""#).expect("local should parse"),
1785 Utc.with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap()
1786 );
1787 assert_eq!(
1788 local_from_str(r#""2014-07-24T13:57:06+01:23""#).expect("local should parse with offset"),
1789 Utc.with_ymd_and_hms(2014, 7, 24, 12, 34, 6).unwrap()
1790 );
1791
1792 assert!(utc_from_str(r#""2014-07-32T12:34:06Z""#).is_err());
1793 assert!(fixed_from_str(r#""2014-07-32T12:34:06Z""#).is_err());
1794}
1795
1796#[cfg(all(test, feature = "clock", feature = "rustc-serialize"))]
1797fn test_decodable_json_timestamps<FUtc, FFixed, FLocal, E>(
1798 utc_from_str: FUtc,
1799 fixed_from_str: FFixed,
1800 local_from_str: FLocal,
1801) where
1802 FUtc: Fn(&str) -> Result<rustc_serialize::TsSeconds<Utc>, E>,
1803 FFixed: Fn(&str) -> Result<rustc_serialize::TsSeconds<FixedOffset>, E>,
1804 FLocal: Fn(&str) -> Result<rustc_serialize::TsSeconds<Local>, E>,
1805 E: ::core::fmt::Debug,
1806{
1807 fn norm<Tz: TimeZone>(dt: &Option<DateTime<Tz>>) -> Option<(&DateTime<Tz>, &Tz::Offset)> {
1808 dt.as_ref().map(|dt| (dt, dt.offset()))
1809 }
1810
1811 assert_eq!(
1812 norm(&utc_from_str("0").ok().map(DateTime::from)),
1813 norm(&Some(Utc.with_ymd_and_hms(1970, 1, 1, 0, 0, 0).unwrap()))
1814 );
1815 assert_eq!(
1816 norm(&utc_from_str("-1").ok().map(DateTime::from)),
1817 norm(&Some(Utc.with_ymd_and_hms(1969, 12, 31, 23, 59, 59).unwrap()))
1818 );
1819
1820 assert_eq!(
1821 norm(&fixed_from_str("0").ok().map(DateTime::from)),
1822 norm(&Some(
1823 FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(1970, 1, 1, 0, 0, 0).unwrap()
1824 ))
1825 );
1826 assert_eq!(
1827 norm(&fixed_from_str("-1").ok().map(DateTime::from)),
1828 norm(&Some(
1829 FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(1969, 12, 31, 23, 59, 59).unwrap()
1830 ))
1831 );
1832
1833 assert_eq!(
1834 *fixed_from_str("0").expect("0 timestamp should parse"),
1835 Utc.with_ymd_and_hms(1970, 1, 1, 0, 0, 0).unwrap()
1836 );
1837 assert_eq!(
1838 *local_from_str("-1").expect("-1 timestamp should parse"),
1839 Utc.with_ymd_and_hms(1969, 12, 31, 23, 59, 59).unwrap()
1840 );
1841}