bumpalo/
lib.rs

1/*!
2
3**A fast bump allocation arena for Rust.**
4
5[![](https://docs.rs/bumpalo/badge.svg)](https://docs.rs/bumpalo/)
6[![](https://img.shields.io/crates/v/bumpalo.svg)](https://crates.io/crates/bumpalo)
7[![](https://img.shields.io/crates/d/bumpalo.svg)](https://crates.io/crates/bumpalo)
8[![Build Status](https://dev.azure.com/fitzgen/bumpalo/_apis/build/status/fitzgen.bumpalo?branchName=master)](https://dev.azure.com/fitzgen/bumpalo/_build/latest?definitionId=2&branchName=master)
9
10![](https://github.com/fitzgen/bumpalo/raw/master/bumpalo.png)
11
12## Bump Allocation
13
14Bump allocation is a fast, but limited approach to allocation. We have a chunk
15of memory, and we maintain a pointer within that memory. Whenever we allocate an
16object, we do a quick test that we have enough capacity left in our chunk to
17allocate the object and then update the pointer by the object's size. *That's
18it!*
19
20The disadvantage of bump allocation is that there is no general way to
21deallocate individual objects or reclaim the memory region for a
22no-longer-in-use object.
23
24These trade offs make bump allocation well-suited for *phase-oriented*
25allocations. That is, a group of objects that will all be allocated during the
26same program phase, used, and then can all be deallocated together as a group.
27
28## Deallocation en Masse, but No `Drop`
29
30To deallocate all the objects in the arena at once, we can simply reset the bump
31pointer back to the start of the arena's memory chunk. This makes mass
32deallocation *extremely* fast, but allocated objects' `Drop` implementations are
33not invoked.
34
35## What happens when the memory chunk is full?
36
37This implementation will allocate a new memory chunk from the global allocator
38and then start bump allocating into this new memory chunk.
39
40## Example
41
42```
43use bumpalo::Bump;
44use std::u64;
45
46struct Doggo {
47    cuteness: u64,
48    age: u8,
49    scritches_required: bool,
50}
51
52// Create a new arena to bump allocate into.
53let bump = Bump::new();
54
55// Allocate values into the arena.
56let scooter = bump.alloc(Doggo {
57    cuteness: u64::max_value(),
58    age: 8,
59    scritches_required: true,
60});
61
62assert!(scooter.scritches_required);
63```
64
65## Collections
66
67When the `"collections"` cargo feature is enabled, a fork of some of the `std`
68library's collections are available in the `collections` module. These
69collection types are modified to allocate their space inside `bumpalo::Bump`
70arenas.
71
72```rust
73# #[cfg(feature = "collections")]
74# {
75use bumpalo::{Bump, collections::Vec};
76
77// Create a new bump arena.
78let bump = Bump::new();
79
80// Create a vector of integers whose storage is backed by the bump arena. The
81// vector cannot outlive its backing arena, and this property is enforced with
82// Rust's lifetime rules.
83let mut v = Vec::new_in(&bump);
84
85// Push a bunch of integers onto `v`!
86for i in 0..100 {
87    v.push(i);
88}
89# }
90```
91
92Eventually [all `std` collection types will be parameterized by an
93allocator](https://github.com/rust-lang/rust/issues/42774) and we can remove
94this `collections` module and use the `std` versions.
95
96## `#![no_std]` Support
97
98Bumpalo is a `no_std` crate. It depends only on the `alloc` and `core` crates.
99
100 */
101
102#![deny(missing_debug_implementations)]
103#![deny(missing_docs)]
104#![no_std]
105
106extern crate alloc as core_alloc;
107
108#[cfg(feature = "collections")]
109pub mod collections;
110
111mod alloc;
112
113use core::cell::Cell;
114use core::iter;
115use core::marker::PhantomData;
116use core::mem;
117use core::ptr::{self, NonNull};
118use core::slice;
119use core::str;
120use core_alloc::alloc::{alloc, dealloc, Layout};
121
122/// An arena to bump allocate into.
123///
124/// ## No `Drop`s
125///
126/// Objects that are bump-allocated will never have their `Drop` implementation
127/// called — unless you do it manually yourself. This makes it relatively
128/// easy to leak memory or other resources.
129///
130/// If you have a type which internally manages
131///
132/// * an allocation from the global heap (e.g. `Vec<T>`),
133/// * open file descriptors (e.g. `std::fs::File`), or
134/// * any other resource that must be cleaned up (e.g. an `mmap`)
135///
136/// and relies on its `Drop` implementation to clean up the internal resource,
137/// then if you allocate that type with a `Bump`, you need to find a new way to
138/// clean up after it yourself.
139///
140/// Potential solutions are
141///
142/// * calling [`drop_in_place`][drop_in_place] or using
143///   [`std::mem::ManuallyDrop`][manuallydrop] to manually drop these types,
144/// * using `bumpalo::collections::Vec` instead of `std::vec::Vec`, or
145/// * simply avoiding allocating these problematic types within a `Bump`.
146///
147/// Note that not calling `Drop` is memory safe! Destructors are never
148/// guaranteed to run in Rust, you can't rely on them for enforcing memory
149/// safety.
150///
151/// [drop_in_place]: https://doc.rust-lang.org/stable/std/ptr/fn.drop_in_place.html
152/// [manuallydrop]: https://doc.rust-lang.org/stable/std/mem/struct.ManuallyDrop.html
153///
154/// ## Example
155///
156/// ```
157/// use bumpalo::Bump;
158///
159/// // Create a new bump arena.
160/// let bump = Bump::new();
161///
162/// // Allocate values into the arena.
163/// let forty_two = bump.alloc(42);
164/// assert_eq!(*forty_two, 42);
165///
166/// // Mutable references are returned from allocation.
167/// let mut s = bump.alloc("bumpalo");
168/// *s = "the bump allocator; and also is a buffalo";
169/// ```
170#[derive(Debug)]
171pub struct Bump {
172    // The current chunk we are bump allocating within.
173    current_chunk_footer: Cell<NonNull<ChunkFooter>>,
174}
175
176#[repr(C)]
177#[derive(Debug)]
178struct ChunkFooter {
179    // Pointer to the start of this chunk allocation. This footer is always at
180    // the end of the chunk.
181    data: NonNull<u8>,
182
183    // The layout of this chunk's allocation.
184    layout: Layout,
185
186    // Link to the previous chunk, if any.
187    prev: Cell<Option<NonNull<ChunkFooter>>>,
188
189    // Bump allocation finger that is always in the range `self.data..=self`.
190    ptr: Cell<NonNull<u8>>,
191}
192
193impl Default for Bump {
194    fn default() -> Bump {
195        Bump::new()
196    }
197}
198
199impl Drop for Bump {
200    fn drop(&mut self) {
201        unsafe {
202            dealloc_chunk_list(Some(self.current_chunk_footer.get()));
203        }
204    }
205}
206
207#[inline]
208unsafe fn dealloc_chunk_list(mut footer: Option<NonNull<ChunkFooter>>) {
209    while let Some(f) = footer {
210        footer = f.as_ref().prev.get();
211        dealloc(f.as_ref().data.as_ptr(), f.as_ref().layout);
212    }
213}
214
215// `Bump`s are safe to send between threads because nothing aliases its owned
216// chunks until you start allocating from it. But by the time you allocate from
217// it, the returned references to allocations borrow the `Bump` and therefore
218// prevent sending the `Bump` across threads until the borrows end.
219unsafe impl Send for Bump {}
220
221#[inline]
222pub(crate) fn round_up_to(n: usize, divisor: usize) -> Option<usize> {
223    debug_assert!(divisor > 0);
224    debug_assert!(divisor.is_power_of_two());
225    Some(n.checked_add(divisor - 1)? & !(divisor - 1))
226}
227
228// After this point, we try to hit page boundaries instead of powers of 2
229const PAGE_STRATEGY_CUTOFF: usize = 0x1000;
230
231// We only support alignments of up to 16 bytes for iter_allocated_chunks.
232const SUPPORTED_ITER_ALIGNMENT: usize = 16;
233const CHUNK_ALIGN: usize = SUPPORTED_ITER_ALIGNMENT;
234const FOOTER_SIZE: usize = mem::size_of::<ChunkFooter>();
235
236// Assert that ChunkFooter is at most the supported alignment. This will give a compile time error if it is not the case
237const _FOOTER_ALIGN_ASSERTION: bool = mem::align_of::<ChunkFooter>() <= CHUNK_ALIGN;
238const _: [(); _FOOTER_ALIGN_ASSERTION as usize] = [()];
239
240// Maximum typical overhead per allocation imposed by allocators.
241const MALLOC_OVERHEAD: usize = 16;
242
243// This is the overhead from malloc, footer and alignment. For instance, if
244// we want to request a chunk of memory that has at least X bytes usable for
245// allocations (where X is aligned to CHUNK_ALIGN), then we expect that the
246// after adding a footer, malloc overhead and alignment, the chunk of memory
247// the allocator actually sets asside for us is X+OVERHEAD rounded up to the
248// nearest suitable size boundary.
249const OVERHEAD: usize = (MALLOC_OVERHEAD + FOOTER_SIZE + (CHUNK_ALIGN - 1)) & !(CHUNK_ALIGN - 1);
250
251// Choose a relatively small default initial chunk size, since we double chunk
252// sizes as we grow bump arenas to amortize costs of hitting the global
253// allocator.
254const FIRST_ALLOCATION_GOAL: usize = 1 << 9;
255
256// The actual size of the first allocation is going to be a bit smaller
257// than the goal. We need to make room for the footer, and we also need
258// take the alignment into account.
259const DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER: usize = FIRST_ALLOCATION_GOAL - OVERHEAD;
260
261#[inline]
262fn layout_for_array<T>(len: usize) -> Option<Layout> {
263    // TODO: use Layout::array once the rust feature `alloc_layout_extra`
264    // gets stabilized
265    //
266    // According to https://doc.rust-lang.org/reference/type-layout.html#size-and-alignment
267    // the size of a value is always a multiple of it's alignment. But that does not seem to match
268    // with https://doc.rust-lang.org/std/alloc/struct.Layout.html#method.from_size_align
269    //
270    // Let's be on the safe size and round up to the padding in any case.
271    //
272    // An interesting question is whether there needs to be padding at the end of
273    // the last object in the array. Again, we take the safe approach and include it.
274
275    let layout = Layout::new::<T>();
276    let size_rounded_up = round_up_to(layout.size(), layout.align())?;
277    let total_size = len.checked_mul(size_rounded_up)?;
278
279    Layout::from_size_align(total_size, layout.align()).ok()
280}
281
282/// Wrapper around `Layout::from_size_align` that adds debug assertions.
283#[inline]
284unsafe fn layout_from_size_align(size: usize, align: usize) -> Layout {
285    if cfg!(debug_assertions) {
286        Layout::from_size_align(size, align).unwrap()
287    } else {
288        Layout::from_size_align_unchecked(size, align)
289    }
290}
291
292#[inline(never)]
293fn allocation_size_overflow<T>() -> T {
294    panic!("requested allocation size overflowed")
295}
296
297impl Bump {
298    /// Construct a new arena to bump allocate into.
299    ///
300    /// ## Example
301    ///
302    /// ```
303    /// let bump = bumpalo::Bump::new();
304    /// # let _ = bump;
305    /// ```
306    pub fn new() -> Bump {
307        Self::with_capacity(0)
308    }
309
310    /// Construct a new arena with the specified capacity to bump allocate into.
311    ///
312    /// ## Example
313    ///
314    /// ```
315    /// let bump = bumpalo::Bump::with_capacity(100);
316    /// # let _ = bump;
317    /// ```
318    pub fn with_capacity(capacity: usize) -> Bump {
319        let chunk_footer = Self::new_chunk(
320            None,
321            Some(unsafe { layout_from_size_align(capacity, 1) }),
322            None,
323        );
324        Bump {
325            current_chunk_footer: Cell::new(chunk_footer),
326        }
327    }
328
329    /// Allocate a new chunk and return its initialized footer.
330    ///
331    /// If given, `layouts` is a tuple of the current chunk size and the
332    /// layout of the allocation request that triggered us to fall back to
333    /// allocating a new chunk of memory.
334    fn new_chunk(
335        old_size_with_footer: Option<usize>,
336        requested_layout: Option<Layout>,
337        prev: Option<NonNull<ChunkFooter>>,
338    ) -> NonNull<ChunkFooter> {
339        unsafe {
340            // As a sane default, we want our new allocation to be about twice as
341            // big as the previous allocation
342            let mut new_size_without_footer =
343                if let Some(old_size_with_footer) = old_size_with_footer {
344                    let old_size_without_footer = old_size_with_footer - FOOTER_SIZE;
345                    old_size_without_footer
346                        .checked_mul(2)
347                        .unwrap_or_else(|| oom())
348                } else {
349                    DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER
350                };
351
352            // We want to have CHUNK_ALIGN or better alignment
353            let mut align = CHUNK_ALIGN;
354
355            // If we already know we need to fulfill some request,
356            // make sure we allocate at least enough to satisfy it
357            if let Some(requested_layout) = requested_layout {
358                align = align.max(requested_layout.align());
359                let requested_size = round_up_to(requested_layout.size(), align)
360                    .unwrap_or_else(allocation_size_overflow);
361                new_size_without_footer = new_size_without_footer.max(requested_size);
362            }
363
364            // We want our allocations to play nice with the memory allocator,
365            // and waste as little memory as possible.
366            // For small allocations, this means that the entire allocation
367            // including the chunk footer and mallocs internal overhead is
368            // as close to a power of two as we can go without going over.
369            // For larger allocations, we only need to get close to a page
370            // boundary without going over.
371            if new_size_without_footer < PAGE_STRATEGY_CUTOFF {
372                new_size_without_footer =
373                    (new_size_without_footer + OVERHEAD).next_power_of_two() - OVERHEAD;
374            } else {
375                new_size_without_footer = round_up_to(new_size_without_footer + OVERHEAD, 0x1000)
376                    .unwrap_or_else(|| oom())
377                    - OVERHEAD;
378            }
379
380            debug_assert_eq!(align % CHUNK_ALIGN, 0);
381            debug_assert_eq!(new_size_without_footer % CHUNK_ALIGN, 0);
382            let size = new_size_without_footer
383                .checked_add(FOOTER_SIZE)
384                .unwrap_or_else(allocation_size_overflow);
385            let layout = layout_from_size_align(size, align);
386
387            debug_assert!(size >= old_size_with_footer.unwrap_or(0) * 2);
388
389            let data = alloc(layout);
390            let data = NonNull::new(data).unwrap_or_else(|| oom());
391
392            // The `ChunkFooter` is at the end of the chunk.
393            let footer_ptr = data.as_ptr() as usize + new_size_without_footer;
394            debug_assert_eq!((data.as_ptr() as usize) % align, 0);
395            debug_assert_eq!(footer_ptr % CHUNK_ALIGN, 0);
396            let footer_ptr = footer_ptr as *mut ChunkFooter;
397
398            // The bump pointer is initialized to the end of the range we will
399            // bump out of.
400            let ptr = Cell::new(NonNull::new_unchecked(footer_ptr as *mut u8));
401
402            ptr::write(
403                footer_ptr,
404                ChunkFooter {
405                    data,
406                    layout,
407                    prev: Cell::new(prev),
408                    ptr,
409                },
410            );
411
412            NonNull::new_unchecked(footer_ptr)
413        }
414    }
415
416    /// Reset this bump allocator.
417    ///
418    /// Performs mass deallocation on everything allocated in this arena by
419    /// resetting the pointer into the underlying chunk of memory to the start
420    /// of the chunk. Does not run any `Drop` implementations on deallocated
421    /// objects; see [the `Bump` type's top-level
422    /// documentation](./struct.Bump.html) for details.
423    ///
424    /// If this arena has allocated multiple chunks to bump allocate into, then
425    /// the excess chunks are returned to the global allocator.
426    ///
427    /// ## Example
428    ///
429    /// ```
430    /// let mut bump = bumpalo::Bump::new();
431    ///
432    /// // Allocate a bunch of things.
433    /// {
434    ///     for i in 0..100 {
435    ///         bump.alloc(i);
436    ///     }
437    /// }
438    ///
439    /// // Reset the arena.
440    /// bump.reset();
441    ///
442    /// // Allocate some new things in the space previously occupied by the
443    /// // original things.
444    /// for j in 200..400 {
445    ///     bump.alloc(j);
446    /// }
447    ///```
448    pub fn reset(&mut self) {
449        // Takes `&mut self` so `self` must be unique and there can't be any
450        // borrows active that would get invalidated by resetting.
451        unsafe {
452            let cur_chunk = self.current_chunk_footer.get();
453
454            // Deallocate all chunks except the current one
455            let prev_chunk = cur_chunk.as_ref().prev.replace(None);
456            dealloc_chunk_list(prev_chunk);
457
458            // Reset the bump finger to the end of the chunk.
459            cur_chunk.as_ref().ptr.set(cur_chunk.cast());
460
461            debug_assert!(
462                self.current_chunk_footer
463                    .get()
464                    .as_ref()
465                    .prev
466                    .get()
467                    .is_none(),
468                "We should only have a single chunk"
469            );
470            debug_assert_eq!(
471                self.current_chunk_footer.get().as_ref().ptr.get(),
472                self.current_chunk_footer.get().cast(),
473                "Our chunk's bump finger should be reset to the start of its allocation"
474            );
475        }
476    }
477
478    /// Allocate an object in this `Bump` and return an exclusive reference to
479    /// it.
480    ///
481    /// ## Panics
482    ///
483    /// Panics if reserving space for `T` would cause an overflow.
484    ///
485    /// ## Example
486    ///
487    /// ```
488    /// let bump = bumpalo::Bump::new();
489    /// let x = bump.alloc("hello");
490    /// assert_eq!(*x, "hello");
491    /// ```
492    #[inline(always)]
493    #[allow(clippy::mut_from_ref)]
494    pub fn alloc<T>(&self, val: T) -> &mut T {
495        self.alloc_with(|| val)
496    }
497
498    /// Pre-allocate space for an object in this `Bump`, initializes it using
499    /// the closure, then returns an exclusive reference to it.
500    ///
501    /// Calling `bump.alloc(x)` is essentially equivalent to calling
502    /// `bump.alloc_with(|| x)`. However if you use `alloc_with`, then the
503    /// closure will not be invoked until after allocating space for storing
504    /// `x` on the heap.
505    ///
506    /// This can be useful in certain edge-cases related to compiler
507    /// optimizations. When evaluating `bump.alloc(x)`, semantically `x` is
508    /// first put on the stack and then moved onto the heap. In some cases,
509    /// the compiler is able to optimize this into constructing `x` directly
510    /// on the heap, however in many cases it does not.
511    ///
512    /// The function `alloc_with` tries to help the compiler be smarter. In
513    /// most cases doing `bump.alloc_with(|| x)` on release mode will be
514    /// enough to help the compiler to realize this optimization is valid
515    /// and construct `x` directly onto the heap.
516    ///
517    /// ## Warning
518    ///
519    /// This function critically depends on compiler optimizations to achieve
520    /// its desired effect. This means that it is not an effective tool when
521    /// compiling without optimizations on.
522    ///
523    /// Even when optimizations are on, this function does not **guarantee**
524    /// that the value is constructed on the heap. To the best of our
525    /// knowledge no such guarantee can be made in stable Rust as of 1.33.
526    ///
527    /// ## Panics
528    ///
529    /// Panics if reserving space for `T` would cause an overflow.
530    ///
531    /// ## Example
532    ///
533    /// ```
534    /// let bump = bumpalo::Bump::new();
535    /// let x = bump.alloc_with(|| "hello");
536    /// assert_eq!(*x, "hello");
537    /// ```
538    #[inline(always)]
539    #[allow(clippy::mut_from_ref)]
540    pub fn alloc_with<F, T>(&self, f: F) -> &mut T
541    where
542        F: FnOnce() -> T,
543    {
544        #[inline(always)]
545        unsafe fn inner_writer<T, F>(ptr: *mut T, f: F)
546        where
547            F: FnOnce() -> T,
548        {
549            // This function is translated as:
550            // - allocate space for a T on the stack
551            // - call f() with the return value being put onto this stack space
552            // - memcpy from the stack to the heap
553            //
554            // Ideally we want LLVM to always realize that doing a stack
555            // allocation is unnecessary and optimize the code so it writes
556            // directly into the heap instead. It seems we get it to realize
557            // this most consistently if we put this critical line into it's
558            // own function instead of inlining it into the surrounding code.
559            ptr::write(ptr, f())
560        }
561
562        let layout = Layout::new::<T>();
563
564        unsafe {
565            let p = self.alloc_layout(layout);
566            let p = p.as_ptr() as *mut T;
567            inner_writer(p, f);
568            &mut *p
569        }
570    }
571
572    /// `Copy` a slice into this `Bump` and return an exclusive reference to
573    /// the copy.
574    ///
575    /// ## Panics
576    ///
577    /// Panics if reserving space for the slice would cause an overflow.
578    ///
579    /// ## Example
580    ///
581    /// ```
582    /// let bump = bumpalo::Bump::new();
583    /// let x = bump.alloc_slice_copy(&[1, 2, 3]);
584    /// assert_eq!(x, &[1, 2, 3]);
585    /// ```
586    #[inline(always)]
587    #[allow(clippy::mut_from_ref)]
588    pub fn alloc_slice_copy<T>(&self, src: &[T]) -> &mut [T]
589    where
590        T: Copy,
591    {
592        let layout = Layout::for_value(src);
593        let dst = self.alloc_layout(layout).cast::<T>();
594
595        unsafe {
596            ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), src.len());
597            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
598        }
599    }
600
601    /// `Clone` a slice into this `Bump` and return an exclusive reference to
602    /// the clone. Prefer `alloc_slice_copy` if `T` is `Copy`.
603    ///
604    /// ## Panics
605    ///
606    /// Panics if reserving space for the slice would cause an overflow.
607    ///
608    /// ## Example
609    ///
610    /// ```
611    /// #[derive(Clone, Debug, Eq, PartialEq)]
612    /// struct Sheep {
613    ///     name: String,
614    /// }
615    ///
616    /// let originals = vec![
617    ///     Sheep { name: "Alice".into() },
618    ///     Sheep { name: "Bob".into() },
619    ///     Sheep { name: "Cathy".into() },
620    /// ];
621    ///
622    /// let bump = bumpalo::Bump::new();
623    /// let clones = bump.alloc_slice_clone(&originals);
624    /// assert_eq!(originals, clones);
625    /// ```
626    #[inline(always)]
627    #[allow(clippy::mut_from_ref)]
628    pub fn alloc_slice_clone<T>(&self, src: &[T]) -> &mut [T]
629    where
630        T: Clone,
631    {
632        let layout = Layout::for_value(src);
633        let dst = self.alloc_layout(layout).cast::<T>();
634
635        unsafe {
636            for (i, val) in src.iter().cloned().enumerate() {
637                ptr::write(dst.as_ptr().add(i), val);
638            }
639
640            slice::from_raw_parts_mut(dst.as_ptr(), src.len())
641        }
642    }
643
644    /// `Copy` a string slice into this `Bump` and return an exclusive reference to it.
645    ///
646    /// ## Panics
647    ///
648    /// Panics if reserving space for the string would cause an overflow.
649    ///
650    /// ## Example
651    ///
652    /// ```
653    /// let bump = bumpalo::Bump::new();
654    /// let hello = bump.alloc_str("hello world");
655    /// assert_eq!("hello world", hello);
656    /// ```
657    #[inline(always)]
658    #[allow(clippy::mut_from_ref)]
659    pub fn alloc_str(&self, src: &str) -> &mut str {
660        let buffer = self.alloc_slice_copy(src.as_bytes());
661        unsafe {
662            // This is OK, because it already came in as str, so it is guaranteed to be utf8
663            str::from_utf8_unchecked_mut(buffer)
664        }
665    }
666
667    /// Allocates a new slice of size `len` into this `Bump` and returns an
668    /// exclusive reference to the copy.
669    ///
670    /// The elements of the slice are initialized using the supplied closure.
671    /// The closure argument is the position in the slice.
672    ///
673    /// ## Panics
674    ///
675    /// Panics if reserving space for the slice would cause an overflow.
676    ///
677    /// ## Example
678    ///
679    /// ```
680    /// let bump = bumpalo::Bump::new();
681    /// let x = bump.alloc_slice_fill_with(5, |i| 5*(i+1));
682    /// assert_eq!(x, &[5, 10, 15, 20, 25]);
683    /// ```
684    #[inline(always)]
685    #[allow(clippy::mut_from_ref)]
686    pub fn alloc_slice_fill_with<T, F>(&self, len: usize, mut f: F) -> &mut [T]
687    where
688        F: FnMut(usize) -> T,
689    {
690        let layout = layout_for_array::<T>(len).unwrap_or_else(|| oom());
691        let dst = self.alloc_layout(layout).cast::<T>();
692
693        unsafe {
694            for i in 0..len {
695                ptr::write(dst.as_ptr().add(i), f(i));
696            }
697
698            let result = slice::from_raw_parts_mut(dst.as_ptr(), len);
699            debug_assert_eq!(Layout::for_value(result), layout);
700            result
701        }
702    }
703
704    /// Allocates a new slice of size `len` into this `Bump` and returns an
705    /// exclusive reference to the copy.
706    ///
707    /// All elements of the slice are initialized to `value`.
708    ///
709    /// ## Panics
710    ///
711    /// Panics if reserving space for the slice would cause an overflow.
712    ///
713    /// ## Example
714    ///
715    /// ```
716    /// let bump = bumpalo::Bump::new();
717    /// let x = bump.alloc_slice_fill_copy(5, 42);
718    /// assert_eq!(x, &[42, 42, 42, 42, 42]);
719    /// ```
720    #[inline(always)]
721    #[allow(clippy::mut_from_ref)]
722    pub fn alloc_slice_fill_copy<T: Copy>(&self, len: usize, value: T) -> &mut [T] {
723        self.alloc_slice_fill_with(len, |_| value)
724    }
725
726    /// Allocates a new slice of size `len` slice into this `Bump` and return an
727    /// exclusive reference to the copy.
728    ///
729    /// All elements of the slice are initialized to `value.clone()`.
730    ///
731    /// ## Panics
732    ///
733    /// Panics if reserving space for the slice would cause an overflow.
734    ///
735    /// ## Example
736    ///
737    /// ```
738    /// let bump = bumpalo::Bump::new();
739    /// let s: String = "Hello Bump!".to_string();
740    /// let x: &[String] = bump.alloc_slice_fill_clone(2, &s);
741    /// assert_eq!(x.len(), 2);
742    /// assert_eq!(&x[0], &s);
743    /// assert_eq!(&x[1], &s);
744    /// ```
745    #[inline(always)]
746    #[allow(clippy::mut_from_ref)]
747    pub fn alloc_slice_fill_clone<T: Clone>(&self, len: usize, value: &T) -> &mut [T] {
748        self.alloc_slice_fill_with(len, |_| value.clone())
749    }
750
751    /// Allocates a new slice of size `len` slice into this `Bump` and return an
752    /// exclusive reference to the copy.
753    ///
754    /// The elements are initialized using the supplied iterator.
755    ///
756    /// ## Panics
757    ///
758    /// Panics if reserving space for the slice would cause an overflow, or if the supplied
759    /// iterator returns fewer elements than it promised.
760    ///
761    /// ## Example
762    ///
763    /// ```
764    /// let bump = bumpalo::Bump::new();
765    /// let x: &[i32] = bump.alloc_slice_fill_iter([2, 3, 5].iter().cloned().map(|i| i * i));
766    /// assert_eq!(x, [4, 9, 25]);
767    /// ```
768    #[inline(always)]
769    #[allow(clippy::mut_from_ref)]
770    pub fn alloc_slice_fill_iter<T, I>(&self, iter: I) -> &mut [T]
771    where
772        I: IntoIterator<Item = T>,
773        I::IntoIter: ExactSizeIterator,
774    {
775        let mut iter = iter.into_iter();
776        self.alloc_slice_fill_with(iter.len(), |_| {
777            iter.next().expect("Iterator supplied too few elements")
778        })
779    }
780
781    /// Allocates a new slice of size `len` slice into this `Bump` and return an
782    /// exclusive reference to the copy.
783    ///
784    /// All elements of the slice are initialized to `T::default()`.
785    ///
786    /// ## Panics
787    ///
788    /// Panics if reserving space for the slice would cause an overflow.
789    ///
790    /// ## Example
791    ///
792    /// ```
793    /// let bump = bumpalo::Bump::new();
794    /// let x = bump.alloc_slice_fill_default::<u32>(5);
795    /// assert_eq!(x, &[0, 0, 0, 0, 0]);
796    /// ```
797    #[inline(always)]
798    #[allow(clippy::mut_from_ref)]
799    pub fn alloc_slice_fill_default<T: Default>(&self, len: usize) -> &mut [T] {
800        self.alloc_slice_fill_with(len, |_| T::default())
801    }
802
803    /// Allocate space for an object with the given `Layout`.
804    ///
805    /// The returned pointer points at uninitialized memory, and should be
806    /// initialized with
807    /// [`std::ptr::write`](https://doc.rust-lang.org/stable/std/ptr/fn.write.html).
808    #[inline(always)]
809    pub fn alloc_layout(&self, layout: Layout) -> NonNull<u8> {
810        if let Some(p) = self.try_alloc_layout_fast(layout) {
811            p
812        } else {
813            self.alloc_layout_slow(layout)
814        }
815    }
816
817    #[inline(always)]
818    fn try_alloc_layout_fast(&self, layout: Layout) -> Option<NonNull<u8>> {
819        unsafe {
820            if layout.size() == 0 {
821                // We want to use NonNull::dangling here, but that function uses mem::align_of::<T>
822                // internally. For our use-case we cannot call dangling::<T>, since we are not generic
823                // over T; we only have access to the Layout of T. Instead we re-implement the
824                // functionality here.
825                //
826                // See https://github.com/rust-lang/rust/blob/9966af3/src/libcore/ptr/non_null.rs#L70
827                // for the reference implementation.
828                let ptr = layout.align() as *mut u8;
829                return Some(NonNull::new_unchecked(ptr));
830            }
831
832            let footer = self.current_chunk_footer.get();
833            let footer = footer.as_ref();
834            let ptr = footer.ptr.get().as_ptr() as usize;
835            let start = footer.data.as_ptr() as usize;
836            debug_assert!(start <= ptr);
837            debug_assert!(ptr <= footer as *const _ as usize);
838
839            let ptr = ptr.checked_sub(layout.size())?;
840            let aligned_ptr = ptr & !(layout.align() - 1);
841
842            if aligned_ptr >= start {
843                let aligned_ptr = NonNull::new_unchecked(aligned_ptr as *mut u8);
844                footer.ptr.set(aligned_ptr);
845                Some(aligned_ptr)
846            } else {
847                None
848            }
849        }
850    }
851
852    // Slow path allocation for when we need to allocate a new chunk from the
853    // parent bump set because there isn't enough room in our current chunk.
854    #[inline(never)]
855    fn alloc_layout_slow(&self, layout: Layout) -> NonNull<u8> {
856        unsafe {
857            let size = layout.size();
858
859            // Get a new chunk from the global allocator.
860            let current_footer = self.current_chunk_footer.get();
861            let current_layout = current_footer.as_ref().layout;
862            let new_footer = Bump::new_chunk(
863                Some(current_layout.size()),
864                Some(layout),
865                Some(current_footer),
866            );
867            debug_assert_eq!(
868                new_footer.as_ref().data.as_ptr() as usize % layout.align(),
869                0
870            );
871
872            // Set the new chunk as our new current chunk.
873            self.current_chunk_footer.set(new_footer);
874
875            let new_footer = new_footer.as_ref();
876
877            // Move the bump ptr finger down to allocate room for `val`. We know
878            // this can't overflow because we successfully allocated a chunk of
879            // at least the requested size.
880            let ptr = new_footer.ptr.get().as_ptr() as usize - size;
881            // Round the pointer down to the requested alignment.
882            let ptr = ptr & !(layout.align() - 1);
883            debug_assert!(
884                ptr <= new_footer as *const _ as usize,
885                "{:#x} <= {:#x}",
886                ptr,
887                new_footer as *const _ as usize
888            );
889            let ptr = NonNull::new_unchecked(ptr as *mut u8);
890            new_footer.ptr.set(ptr);
891
892            // Return a pointer to the freshly allocated region in this chunk.
893            ptr
894        }
895    }
896
897    /// Returns an iterator over each chunk of allocated memory that
898    /// this arena has bump allocated into.
899    ///
900    /// The chunks are returned ordered by allocation time, with the most
901    /// recently allocated chunk being returned first, and the least recently
902    /// allocated chunk being returned last.
903    ///
904    /// The values inside each chunk are also ordered by allocation time, with
905    /// the most recent allocation being earlier in the slice, and the least
906    /// recent allocation being towards the end of the slice.
907    ///
908    /// ## Safety
909    ///
910    /// Because this method takes `&mut self`, we know that the bump arena
911    /// reference is unique and therefore there aren't any active references to
912    /// any of the objects we've allocated in it either. This potential aliasing
913    /// of exclusive references is one common footgun for unsafe code that we
914    /// don't need to worry about here.
915    ///
916    /// However, there could be regions of uninitialized memory used as padding
917    /// between allocations, which is why this iterator has items of type
918    /// `[MaybeUninit<u8>]`, instead of simply `[u8]`.
919    ///
920    /// The only way to guarantee that there is no padding between allocations
921    /// or within allocated objects is if all of these properties hold:
922    ///
923    /// 1. Every object allocated in this arena has the same alignment,
924    ///    and that alignment is at most 16.
925    /// 2. Every object's size is a multiple of its alignment.
926    /// 3. None of the objects allocated in this arena contain any internal
927    ///    padding.
928    ///
929    /// If you want to use this `iter_allocated_chunks` method, it is *your*
930    /// responsibility to ensure that these properties hold before calling
931    /// `MaybeUninit::assume_init` or otherwise reading the returned values.
932    ///
933    /// ## Example
934    ///
935    /// ```
936    /// let mut bump = bumpalo::Bump::new();
937    ///
938    /// // Allocate a bunch of `i32`s in this bump arena, potentially causing
939    /// // additional memory chunks to be reserved.
940    /// for i in 0..10000 {
941    ///     bump.alloc(i);
942    /// }
943    ///
944    /// // Iterate over each chunk we've bump allocated into. This is safe
945    /// // because we have only allocated `i32`s in this arena, which fulfills
946    /// // the above requirements.
947    /// for ch in bump.iter_allocated_chunks() {
948    ///     println!("Used a chunk that is {} bytes long", ch.len());
949    ///     println!("The first byte is {:?}", unsafe {
950    ///         ch.get(0).unwrap().assume_init()
951    ///     });
952    /// }
953    ///
954    /// // Within a chunk, allocations are ordered from most recent to least
955    /// // recent. If we allocated 'a', then 'b', then 'c', when we iterate
956    /// // through the chunk's data, we get them in the order 'c', then 'b',
957    /// // then 'a'.
958    ///
959    /// bump.reset();
960    /// bump.alloc(b'a');
961    /// bump.alloc(b'b');
962    /// bump.alloc(b'c');
963    ///
964    /// assert_eq!(bump.iter_allocated_chunks().count(), 1);
965    /// let chunk = bump.iter_allocated_chunks().nth(0).unwrap();
966    /// assert_eq!(chunk.len(), 3);
967    ///
968    /// // Safe because we've only allocated `u8`s in this arena, which
969    /// // fulfills the above requirements.
970    /// unsafe {
971    ///     assert_eq!(chunk[0].assume_init(), b'c');
972    ///     assert_eq!(chunk[1].assume_init(), b'b');
973    ///     assert_eq!(chunk[2].assume_init(), b'a');
974    /// }
975    /// ```
976    pub fn iter_allocated_chunks(&mut self) -> ChunkIter<'_> {
977        ChunkIter {
978            footer: Some(self.current_chunk_footer.get()),
979            bump: PhantomData,
980        }
981    }
982
983    /// Calculates the number of bytes currently allocated across all chunks.
984    ///
985    /// If you allocate types of different alignments or types with
986    /// larger-than-typical alignment in the same arena, some padding
987    /// bytes might get allocated in the bump arena. Note that those padding
988    /// bytes will add to this method's resulting sum, so you cannot rely
989    /// on it only counting the sum of the sizes of the things
990    /// you've allocated in the arena.
991    ///
992    /// ## Example
993    ///
994    /// ```
995    /// let bump = bumpalo::Bump::new();
996    /// let _x = bump.alloc_slice_fill_default::<u32>(5);
997    /// let bytes = bump.allocated_bytes();
998    /// assert!(bytes >= core::mem::size_of::<u32>() * 5);
999    /// ```
1000    pub fn allocated_bytes(&self) -> usize {
1001        let mut footer = Some(self.current_chunk_footer.get());
1002
1003        let mut bytes = 0;
1004
1005        while let Some(f) = footer {
1006            let foot = unsafe { f.as_ref() };
1007
1008            let ptr = foot.ptr.get().as_ptr() as usize;
1009            debug_assert!(ptr <= foot as *const _ as usize);
1010
1011            bytes += foot as *const _ as usize - ptr;
1012
1013            footer = foot.prev.get();
1014        }
1015
1016        bytes
1017    }
1018
1019    #[inline]
1020    unsafe fn is_last_allocation(&self, ptr: NonNull<u8>) -> bool {
1021        let footer = self.current_chunk_footer.get();
1022        let footer = footer.as_ref();
1023        footer.ptr.get() == ptr
1024    }
1025}
1026
1027/// An iterator over each chunk of allocated memory that
1028/// an arena has bump allocated into.
1029///
1030/// The chunks are returned ordered by allocation time, with the most recently
1031/// allocated chunk being returned first.
1032///
1033/// The values inside each chunk is also ordered by allocation time, with the most
1034/// recent allocation being earlier in the slice.
1035///
1036/// This struct is created by the [`iter_allocated_chunks`] method on
1037/// [`Bump`]. See that function for a safety description regarding reading from the returned items.
1038///
1039/// [`Bump`]: ./struct.Bump.html
1040/// [`iter_allocated_chunks`]: ./struct.Bump.html#method.iter_allocated_chunks
1041#[derive(Debug)]
1042pub struct ChunkIter<'a> {
1043    footer: Option<NonNull<ChunkFooter>>,
1044    bump: PhantomData<&'a mut Bump>,
1045}
1046
1047impl<'a> Iterator for ChunkIter<'a> {
1048    type Item = &'a [mem::MaybeUninit<u8>];
1049    fn next(&mut self) -> Option<&'a [mem::MaybeUninit<u8>]> {
1050        unsafe {
1051            let foot = self.footer?;
1052            let foot = foot.as_ref();
1053            let data = foot.data.as_ptr() as usize;
1054            let ptr = foot.ptr.get().as_ptr() as usize;
1055            debug_assert!(data <= ptr);
1056            debug_assert!(ptr <= foot as *const _ as usize);
1057
1058            let len = foot as *const _ as usize - ptr;
1059            let slice = slice::from_raw_parts(ptr as *const mem::MaybeUninit<u8>, len);
1060            self.footer = foot.prev.get();
1061            Some(slice)
1062        }
1063    }
1064}
1065
1066impl<'a> iter::FusedIterator for ChunkIter<'a> {}
1067
1068#[inline(never)]
1069#[cold]
1070fn oom() -> ! {
1071    panic!("out of memory")
1072}
1073
1074unsafe impl<'a> alloc::Alloc for &'a Bump {
1075    #[inline(always)]
1076    unsafe fn alloc(&mut self, layout: Layout) -> Result<NonNull<u8>, alloc::AllocErr> {
1077        Ok(self.alloc_layout(layout))
1078    }
1079
1080    #[inline]
1081    unsafe fn dealloc(&mut self, ptr: NonNull<u8>, layout: Layout) {
1082        // If the pointer is the last allocation we made, we can reuse the bytes,
1083        // otherwise they are simply leaked -- at least until somebody calls reset().
1084        if layout.size() != 0 && self.is_last_allocation(ptr) {
1085            let ptr = NonNull::new_unchecked(ptr.as_ptr().add(layout.size()));
1086            self.current_chunk_footer.get().as_ref().ptr.set(ptr);
1087        }
1088    }
1089
1090    #[inline]
1091    unsafe fn realloc(
1092        &mut self,
1093        ptr: NonNull<u8>,
1094        layout: Layout,
1095        new_size: usize,
1096    ) -> Result<NonNull<u8>, alloc::AllocErr> {
1097        let old_size = layout.size();
1098
1099        if old_size == 0 {
1100            return self.alloc(layout);
1101        }
1102
1103        if new_size <= old_size {
1104            if self.is_last_allocation(ptr)
1105                // Only reclaim the excess space (which requires a copy) if it
1106                // is worth it: we are actually going to recover "enough" space
1107                // and we can do a non-overlapping copy.
1108                && new_size <= old_size / 2
1109            {
1110                let delta = old_size - new_size;
1111                let footer = self.current_chunk_footer.get();
1112                let footer = footer.as_ref();
1113                footer
1114                    .ptr
1115                    .set(NonNull::new_unchecked(footer.ptr.get().as_ptr().add(delta)));
1116                let new_ptr = footer.ptr.get();
1117                // NB: we know it is non-overlapping because of the size check
1118                // in the `if` condition.
1119                ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), new_size);
1120                return Ok(new_ptr);
1121            } else {
1122                return Ok(ptr);
1123            }
1124        }
1125
1126        if self.is_last_allocation(ptr) {
1127            // Try to allocate the delta size within this same block so we can
1128            // reuse the currently allocated space.
1129            let delta = new_size - old_size;
1130            if let Some(p) =
1131                self.try_alloc_layout_fast(layout_from_size_align(delta, layout.align()))
1132            {
1133                ptr::copy(ptr.as_ptr(), p.as_ptr(), old_size);
1134                return Ok(p);
1135            }
1136        }
1137
1138        // Fallback: do a fresh allocation and copy the existing data into it.
1139        let new_layout = layout_from_size_align(new_size, layout.align());
1140        let new_ptr = self.alloc_layout(new_layout);
1141        ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), old_size);
1142        Ok(new_ptr)
1143    }
1144}
1145
1146#[cfg(test)]
1147mod tests {
1148    use super::*;
1149
1150    #[test]
1151    fn chunk_footer_is_five_words() {
1152        assert_eq!(mem::size_of::<ChunkFooter>(), mem::size_of::<usize>() * 5);
1153    }
1154
1155    #[test]
1156    #[allow(clippy::cognitive_complexity)]
1157    fn test_realloc() {
1158        use crate::alloc::Alloc;
1159
1160        unsafe {
1161            const CAPACITY: usize = 1024 - OVERHEAD;
1162            let mut b = Bump::with_capacity(CAPACITY);
1163
1164            // `realloc` doesn't shrink allocations that aren't "worth it".
1165            let layout = Layout::from_size_align(100, 1).unwrap();
1166            let p = b.alloc_layout(layout);
1167            let q = (&b).realloc(p, layout, 51).unwrap();
1168            assert_eq!(p, q);
1169            b.reset();
1170
1171            // `realloc` will shrink allocations that are "worth it".
1172            let layout = Layout::from_size_align(100, 1).unwrap();
1173            let p = b.alloc_layout(layout);
1174            let q = (&b).realloc(p, layout, 50).unwrap();
1175            assert!(p != q);
1176            b.reset();
1177
1178            // `realloc` will reuse the last allocation when growing.
1179            let layout = Layout::from_size_align(10, 1).unwrap();
1180            let p = b.alloc_layout(layout);
1181            let q = (&b).realloc(p, layout, 11).unwrap();
1182            assert_eq!(q.as_ptr() as usize, p.as_ptr() as usize - 1);
1183            b.reset();
1184
1185            // `realloc` will allocate a new chunk when growing the last
1186            // allocation, if need be.
1187            let layout = Layout::from_size_align(1, 1).unwrap();
1188            let p = b.alloc_layout(layout);
1189            let q = (&b).realloc(p, layout, CAPACITY + 1).unwrap();
1190            assert!(q.as_ptr() as usize != p.as_ptr() as usize - CAPACITY);
1191            b = Bump::with_capacity(CAPACITY);
1192
1193            // `realloc` will allocate and copy when reallocating anything that
1194            // wasn't the last allocation.
1195            let layout = Layout::from_size_align(1, 1).unwrap();
1196            let p = b.alloc_layout(layout);
1197            let _ = b.alloc_layout(layout);
1198            let q = (&b).realloc(p, layout, 2).unwrap();
1199            assert!(q.as_ptr() as usize != p.as_ptr() as usize - 1);
1200            b.reset();
1201        }
1202    }
1203
1204    #[test]
1205    fn invalid_read() {
1206        use alloc::Alloc;
1207
1208        let mut b = &Bump::new();
1209
1210        unsafe {
1211            let l1 = Layout::from_size_align(12000, 4).unwrap();
1212            let p1 = Alloc::alloc(&mut b, l1).unwrap();
1213
1214            let l2 = Layout::from_size_align(1000, 4).unwrap();
1215            Alloc::alloc(&mut b, l2).unwrap();
1216
1217            let p1 = b.realloc(p1, l1, 24000).unwrap();
1218            let l3 = Layout::from_size_align(24000, 4).unwrap();
1219            b.realloc(p1, l3, 48000).unwrap();
1220        }
1221    }
1222}